Generalized Differential Identities of (Semi–)Prime Rings

被引:0
|
作者
Feng Wei
机构
[1] Beijing Institute of Technology,Department of Applied Mathematics
来源
Acta Mathematica Sinica | 2005年 / 21卷
关键词
Generalized differential identity; Generalized derivation; (Semi–)Prime ring; 16R50; 16W25; 16N60;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a semiprime ring with characteristic p ≥ 0 and RF be its left Martindale quotient ring. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi {\left( {X^{{\Delta _{j} }}_{i} } \right)} $$\end{document} is a reduced generalized differential identity for an essential ideal of R, then ϕ(Zije(Δj)) is a generalized polynomial identity for RF, where e(Δj) are idempotents in the extended centroid of R determined by Δj. Let R be a prime ring and Q be its symmetric Martindale quotient ring. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi {\left( {X^{{\Delta _{j} }}_{i} } \right)} $$\end{document} is a reduced generalized differential identity for a noncommutative Lie ideal of R, then ϕ(Zij) is a generalized polynomial identity for [R,R]. Moreover, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi {\left( {X^{{\Delta _{j} }}_{i} } \right)} $$\end{document} is a reduced generalized differential identity, with coefficients in Q, for a large right ideal of R, then ϕ(Zij is a generalized polynomial identity for Q.
引用
收藏
页码:823 / 832
页数:9
相关论文
共 50 条
  • [31] Centralizing identities involving generalized derivations in prime rings
    De Filippis, Vincenzo
    Gupta, Pallavee
    Tiwari, Shailesh Kumar
    Prajapati, Balchand
    GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (04) : 587 - 605
  • [32] Engel type identities with generalized derivations in prime rings
    Dhara, Basudeb
    Pradhan, Krishna Gopal
    Tiwari, Shailesh Kumar
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2018, 11 (04)
  • [33] Identities with generalized derivations on multilinear polynomials in prime rings
    Dhara B.
    Kar S.
    Pradhan K.G.
    Afrika Matematika, 2016, 27 (7-8) : 1347 - 1360
  • [34] Identities with Generalized Derivations on Prime Rings and Banach Algebras
    Carini, Luisa
    De Filippis, Vincenzo
    ALGEBRA COLLOQUIUM, 2012, 19 : 971 - 986
  • [35] On Semi-prime Rings with Generalized Derivations
    Alshammari, Ibtesam
    Kammoun, Rania
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (02) : 595 - 597
  • [36] On Semi-prime Rings with Generalized Derivations
    Ibtesam Alshammari
    Rania Kammoun
    Bulletin of the Iranian Mathematical Society, 2021, 47 : 595 - 597
  • [37] Some Differential Identities in Prime Gamma-rings
    Ashraf, Mohammad
    Jamal, Malik Rashid
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2014, 32 (01): : 191 - 203
  • [38] Certain differential identities on prime rings and Banach algebras
    De Filippis, Vincenzo
    Hermas, Abderrahman
    Oukhtite, Lahcen
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (05) : 2107 - 2120
  • [39] Differential identities involving Engel conditions in prime rings
    Pary, Sajad Ahmad
    Shah, Firdous A.
    FILOMAT, 2024, 38 (21) : 7435 - 7440
  • [40] *-generalized differential identities of semiprime rings with involution
    Wei, Feng
    HOUSTON JOURNAL OF MATHEMATICS, 2006, 32 (03): : 665 - 681