Some results on *-differential identities in prime rings

被引:0
|
作者
Kumar, Deepak [1 ]
Bhushan, Bharat [1 ]
Sandhu, Gurninder S. [2 ]
机构
[1] Punjabi Univ, Dept Math, PO 147002, Patiala 147002, Punjab, India
[2] Patel Mem Natl Coll, Dept Math, PO 140401, Rajpura 140401, Punjab, India
关键词
Prime ring; generalized derivation; involution; GENERALIZED DERIVATIONS;
D O I
10.1142/S1793557122501595
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a prime ring with involution * of the second kind. An additive mapping F : R -> R is called generalized derivation if there exists a unique derivation d such that F(xy) = F(x)y + xd(y) for all x,y is an element of R. In this paper, we investigate the structure of R and describe the possible forms of generalized derivations of R that satisfy specific *-differential identities. Precisely, we study the following situations: (i) F(x) omicron G(x*) = 0, (ii) F(x) omicron x* = x omicron G(x*), (iii) F(x omicron x*) = G(x) omicron G(x*), (iv) F(x) omicron G(x*) = x omicron x* for all x is an element of R. Moreover, we construct some examples showing that the restrictions imposed in the hypotheses of our theorems are not redundant.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Some Differential Identities in Prime Gamma-rings
    Ashraf, Mohammad
    Jamal, Malik Rashid
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2014, 32 (01): : 191 - 203
  • [2] Some differential identities on prime and semiprime rings and Banach algebras
    Mohd Arif Raza
    Mohammad Shadab Khan
    Nadeem ur Rehman
    Rendiconti del Circolo Matematico di Palermo Series 2, 2019, 68 : 305 - 313
  • [3] Some differential identities on prime and semiprime rings and Banach algebras
    Raza, Mohd Arif
    Khan, Mohammad Shadab
    Ur Rehman, Nadeem
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2019, 68 (02) : 305 - 313
  • [4] SOME DIFFERENTIAL IDENTITIES WITH f-DERIVATIONS ON PRIME RINGS
    Leerawat, Utsanee
    Toka, Patipat
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2022, 57 : 39 - 52
  • [5] On *-differential identities in prime rings with involution
    Ali, Shakir
    Koam, Ali N. A.
    Ansari, Moin A.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (02): : 708 - 715
  • [6] A STUDY OF DIFFERENTIAL IDENTITIES ON σ-PRIME RINGS
    Abbasi, Adnan
    Madni, Md. Arshad
    Mozumder, Muzibur Rahman
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 38 (03): : 679 - 693
  • [7] Differential identities on ideals in prime rings
    Motoshi Hongan
    Nadeem ur Rehman
    Hafedh M. Alnoghashi
    Afrika Matematika, 2022, 33
  • [8] Differential identities on ideals in prime rings
    Hongan, Motoshi
    Rehman, Nadeem Ur
    Alnoghashi, Hafedh M.
    AFRIKA MATEMATIKA, 2022, 33 (03)
  • [9] Differential identities on prime rings with involution
    Mamouni, A.
    Nejjar, B.
    Oukhtite, L.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (09)
  • [10] Central *-differential identities in prime rings
    Lee, PH
    Wong, TL
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1996, 39 (02): : 211 - 215