Economic optimisation in seabream (Sparus aurata) aquaculture production using a particle swarm optimisation algorithm

被引:0
|
作者
Ignacio Llorente
Ladislao Luna
机构
[1] Universidad de Cantabria,Departamento de Administración de Empresas, Facultad de Ciencias Económicas y Empresariales
来源
Aquaculture International | 2014年 / 22卷
关键词
Bioeconomics; Economic optimisation; Operational research; Particle swarm optimisation; Seabream;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this study is the economic optimisation of seabream farming through the determination of the production strategies that maximise the present operating profits of the cultivation process. The methodology applied is a particle swarm optimisation algorithm based on a bioeconomic model that simulates the process of seabream fattening. The biological submodel consists of three interrelated processes, stocking, growth, and mortality, and the economic submodel considers costs and revenues related to the production process. Application of the algorithm to seabream farming in Spain reveals that the activity is profitable and shows competitive differences associated with location. Additionally, the applications of the particle swarm optimisation algorithm could be of interest for the management of other important species, such as salmon (Salmo salar), catfish (Ictalurus punctatus), or tilapia (Oreochromis niloticus).
引用
收藏
页码:1837 / 1849
页数:12
相关论文
共 50 条
  • [31] Transistor Sizing Using Particle Swarm Optimisation
    White, Lyndon
    While, Lyndon
    Deeks, Ben
    Boussaid, Farid
    2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, : 259 - 266
  • [32] Nonlinear mapping using particle swarm optimisation
    Edwards, AI
    Engelbrecht, AP
    Franken, N
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 306 - 313
  • [33] An efficient structural optimisation algorithm using a hybrid version of particle swarm optimisation with simultaneous perturbation stochastic approximation
    Seyedpoor, S. M.
    Gholizadeh, S.
    Talebian, S. R.
    CIVIL ENGINEERING AND ENVIRONMENTAL SYSTEMS, 2010, 27 (04) : 295 - 313
  • [34] Environmentally constrained economic dispatch using Pareto archive particle swarm optimisation
    Chen, Yee Ming
    Wang, Wen-Shiang
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2010, 41 (05) : 593 - 605
  • [35] Location optimisation for antennas by asynchronous particle swarm optimisation
    Liao, Shu-Han
    Chiu, Chien-Ching
    Ho, Min-Hui
    IET COMMUNICATIONS, 2013, 7 (14) : 1510 - 1516
  • [36] Particle swarm optimisation for dynamic optimisation problems: a review
    Jordehi, Ahmad Rezaee
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8): : 1507 - 1516
  • [37] Availability optimisation of heat treatment process using particle swarm optimisation approach
    Kumar A.
    Punia D.S.
    International Journal of Industrial and Systems Engineering, 2023, 45 (04) : 432 - 457
  • [38] Particle Swarm Optimisation Applications in FACTS Optimisation Problem
    Jordehi, Ahmad Rezaee
    Jasni, Jasronita
    Wahab, Noor Izzri Abdul
    Abd Kadir, Mohd Zainal Abidin
    PROCEEDINGS OF THE 2013 IEEE 7TH INTERNATIONAL POWER ENGINEERING AND OPTIMIZATION CONFERENCE (PEOCO2013), 2013, : 193 - 198
  • [39] Optimisation of Warpage on Thin Shell Part by using Particle Swarm Optimisation (PSO)
    Norshahira, R.
    Shayfull, Z.
    Nasir, S. M.
    Saad, S. M. Sazli
    Fathullah, M.
    3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017), 2017, 1885
  • [40] Particle swarm optimisation for dynamic optimisation problems: a review
    Ahmad Rezaee Jordehi
    Neural Computing and Applications, 2014, 25 : 1507 - 1516