Economic optimisation in seabream (Sparus aurata) aquaculture production using a particle swarm optimisation algorithm

被引:0
|
作者
Ignacio Llorente
Ladislao Luna
机构
[1] Universidad de Cantabria,Departamento de Administración de Empresas, Facultad de Ciencias Económicas y Empresariales
来源
Aquaculture International | 2014年 / 22卷
关键词
Bioeconomics; Economic optimisation; Operational research; Particle swarm optimisation; Seabream;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this study is the economic optimisation of seabream farming through the determination of the production strategies that maximise the present operating profits of the cultivation process. The methodology applied is a particle swarm optimisation algorithm based on a bioeconomic model that simulates the process of seabream fattening. The biological submodel consists of three interrelated processes, stocking, growth, and mortality, and the economic submodel considers costs and revenues related to the production process. Application of the algorithm to seabream farming in Spain reveals that the activity is profitable and shows competitive differences associated with location. Additionally, the applications of the particle swarm optimisation algorithm could be of interest for the management of other important species, such as salmon (Salmo salar), catfish (Ictalurus punctatus), or tilapia (Oreochromis niloticus).
引用
收藏
页码:1837 / 1849
页数:12
相关论文
共 50 条
  • [41] Particle swarm optimisation for discrete optimisation problems: a review
    Ahmad Rezaee Jordehi
    Jasronita Jasni
    Artificial Intelligence Review, 2015, 43 : 243 - 258
  • [42] Particle swarm optimisation for discrete optimisation problems: a review
    Jordehi, Ahmad Rezaee
    Jasni, Jasronita
    ARTIFICIAL INTELLIGENCE REVIEW, 2015, 43 (02) : 243 - 258
  • [43] Optimisation of Thin Shell Parts by Using Particle Swarm Optimisation (PSO) Method
    Hidayah, M. H. N.
    Shayfull, Z.
    Nasir, S. M.
    Sazli, S. M.
    Fathullah, M.
    3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017), 2017, 1885
  • [44] Optimisation of integrated process planning and scheduling using a particle swarm optimisation approach
    Guo, Y. W.
    Li, W. D.
    Mileham, A. R.
    Owen, G. W.
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2009, 47 (14) : 3775 - 3796
  • [45] Greenhouse air temperature predictive control using the particle swarm optimisation algorithm
    Coelho, JP
    Oliveira, PBD
    Cunha, JB
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2005, 49 (03) : 330 - 344
  • [46] Perceptive particle swarm optimisation
    Kaewkamnerdpong, B
    Bentley, PJ
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, 2005, : 259 - 263
  • [47] Development of Explicit Neural Predictive Control Algorithm Using Particle Swarm Optimisation
    Lawrynczuk, Maciej
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT I, 2013, 7894 : 130 - 139
  • [48] The optimal design of bellows using a novel discrete particle swarm optimisation algorithm
    Zhang, Li
    Lu, Jingui
    Yu, Ying
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2014, 5 (01) : 48 - 60
  • [49] Optimal Sensor Placement for a Truss Structure Using Particle Swarm Optimisation Algorithm
    Zhao, Jianhua
    Wu, Xiaohong
    Sun, Qing
    Zhang, Ling
    INTERNATIONAL JOURNAL OF ACOUSTICS AND VIBRATION, 2017, 22 (04): : 439 - 447
  • [50] Robotic path planning using hybrid genetic algorithm particle swarm optimisation
    Kala, R. (rahulkalaiiitm@yahoo.co.in), 1600, Inderscience Enterprises Ltd. (04): : 2 - 4