Availability optimisation of heat treatment process using particle swarm optimisation approach

被引:0
|
作者
Kumar A. [1 ]
Punia D.S. [1 ]
机构
[1] Department of Mechanical Engineering, Deen Bandhu Chotu Ram University of Science and Technology, Sonepat, Haryana, Murthal
关键词
availability; particle swarm optimisation; PSO; reliability; SSA; steady state analysis; transient state analysis; TSA;
D O I
10.1504/IJISE.2023.135774
中图分类号
学科分类号
摘要
In this research paper a methodology is presented for prediction of performance parameters of a series parallel industrial system. The particle swarm optimisation (PSO) technique is used for evaluating the performance of industrial system and the Markov method is used for mathematical modelling. The mean time to failure is calculated to be 352 days and it is observed that after 30 days the reliability of the system became steady state which shows the bathtub behaviour. Using the PSO technique for maximising the system availability (SA) with ranges of performance parameters selected from the real industrial system, the different economical possible performance measures for maximum availability is predicted which are helpful for reduction in cost of production. From the performance analysis the optimised availability using PSO is estimated 94.25% whereas it is 93.60% using Markov method. © 2023 Inderscience Enterprises Ltd.
引用
收藏
页码:432 / 457
页数:25
相关论文
共 50 条
  • [1] Optimisation of integrated process planning and scheduling using a particle swarm optimisation approach
    Guo, Y. W.
    Li, W. D.
    Mileham, A. R.
    Owen, G. W.
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2009, 47 (14) : 3775 - 3796
  • [2] An alternative approach for particle swarm optimisation using serendipity
    Procopio Paiva, Fabio Augusto
    Ferreira Costa, Jose Alfredo
    Muniz Silva, Claudio Rodrigues
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2018, 11 (02) : 81 - 90
  • [3] Optimisation of a fermentation process for butanol production by particle swarm optimisation (PSO)
    Mariano, Adriano Pinto
    Borba Costa, Caliane Bastos
    de Angelis, Dejanira de Franceschi
    Maugeri Filho, Francisco
    Pires Atala, Daniel Ibraim
    Wolf Maciel, Maria Regina
    Maciel Filho, Rubens
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2010, 85 (07) : 934 - 949
  • [4] A particle swarm optimisation approach to graph permutations
    Ilaya, Omar
    Bil, Cees.
    Evans, Michael
    2007 INFORMATION DECISION AND CONTROL, 2007, : 237 - +
  • [5] Methodology for optimisation of draft gear design using Particle Swarm Optimisation
    Wu, Q.
    Cole, C.
    Spiryagin, M.
    DYNAMICS OF VEHICLES ON ROADS AND TRACKS, 2016, : 1419 - 1425
  • [6] Transistor Sizing Using Particle Swarm Optimisation
    White, Lyndon
    While, Lyndon
    Deeks, Ben
    Boussaid, Farid
    2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, : 259 - 266
  • [7] Nonlinear mapping using particle swarm optimisation
    Edwards, AI
    Engelbrecht, AP
    Franken, N
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 306 - 313
  • [8] Location optimisation for antennas by asynchronous particle swarm optimisation
    Liao, Shu-Han
    Chiu, Chien-Ching
    Ho, Min-Hui
    IET COMMUNICATIONS, 2013, 7 (14) : 1510 - 1516
  • [9] Particle swarm optimisation for dynamic optimisation problems: a review
    Jordehi, Ahmad Rezaee
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8): : 1507 - 1516
  • [10] Particle Swarm Optimisation Applications in FACTS Optimisation Problem
    Jordehi, Ahmad Rezaee
    Jasni, Jasronita
    Wahab, Noor Izzri Abdul
    Abd Kadir, Mohd Zainal Abidin
    PROCEEDINGS OF THE 2013 IEEE 7TH INTERNATIONAL POWER ENGINEERING AND OPTIMIZATION CONFERENCE (PEOCO2013), 2013, : 193 - 198