Availability optimisation of heat treatment process using particle swarm optimisation approach

被引:0
|
作者
Kumar A. [1 ]
Punia D.S. [1 ]
机构
[1] Department of Mechanical Engineering, Deen Bandhu Chotu Ram University of Science and Technology, Sonepat, Haryana, Murthal
关键词
availability; particle swarm optimisation; PSO; reliability; SSA; steady state analysis; transient state analysis; TSA;
D O I
10.1504/IJISE.2023.135774
中图分类号
学科分类号
摘要
In this research paper a methodology is presented for prediction of performance parameters of a series parallel industrial system. The particle swarm optimisation (PSO) technique is used for evaluating the performance of industrial system and the Markov method is used for mathematical modelling. The mean time to failure is calculated to be 352 days and it is observed that after 30 days the reliability of the system became steady state which shows the bathtub behaviour. Using the PSO technique for maximising the system availability (SA) with ranges of performance parameters selected from the real industrial system, the different economical possible performance measures for maximum availability is predicted which are helpful for reduction in cost of production. From the performance analysis the optimised availability using PSO is estimated 94.25% whereas it is 93.60% using Markov method. © 2023 Inderscience Enterprises Ltd.
引用
收藏
页码:432 / 457
页数:25
相关论文
共 50 条
  • [31] Edge and Corner Extraction Using Particle Swarm Optimisation
    Setayesh, Mahdi
    Johnston, Mark
    Zhang, Mengjie
    AI 2010: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2010, 6464 : 323 - +
  • [32] Estimating HMM Parameters Using Particle Swarm Optimisation
    Phon-Amnuaisuk, Somnuk
    APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2009, 5484 : 625 - 634
  • [33] Effects of Particle Swarm Optimisation on a Hybrid Load Balancing Approach for Resource Optimisation in Internet of Things
    Datiri, Dorcas Dachollom
    Li, Maozhen
    SENSORS, 2023, 23 (04)
  • [34] Parameter Search for a Small Swarm of AUVs Using Particle Swarm Optimisation
    Tholen, Christoph
    Nolle, Lars
    ARTIFICIAL INTELLIGENCE XXXIV, AI 2017, 2017, 10630 : 384 - 396
  • [35] An evolutionary game-theoretical approach to Particle Swarm Optimisation
    Di Chio, Cecilia
    Di Chio, Paolo
    Giacobini, Mario
    APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2008, 4974 : 575 - +
  • [36] Particle swarm optimisation with spatial particle extension
    Krink, T
    Vesterstrom, JS
    Riget, J
    CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 1474 - 1479
  • [37] Stochastic stability of particle swarm optimisation
    Adam Erskine
    Thomas Joyce
    J. Michael Herrmann
    Swarm Intelligence, 2017, 11 : 295 - 315
  • [38] Particle swarm optimisation with Kalman correction
    Naha, A.
    Deb, A. K.
    ELECTRONICS LETTERS, 2013, 49 (07) : 465 - 466
  • [39] Beyond Standard Particle Swarm Optimisation
    Clerc, Maurice
    INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH, 2010, 1 (04) : 46 - 61
  • [40] Avoidance Strategies in Particle Swarm Optimisation
    Mason, Karl
    Howley, Enda
    MENDEL 2015: RECENT ADVANCES IN SOFT COMPUTING, 2015, 378 : 3 - 15