Availability optimisation of heat treatment process using particle swarm optimisation approach

被引:0
|
作者
Kumar A. [1 ]
Punia D.S. [1 ]
机构
[1] Department of Mechanical Engineering, Deen Bandhu Chotu Ram University of Science and Technology, Sonepat, Haryana, Murthal
关键词
availability; particle swarm optimisation; PSO; reliability; SSA; steady state analysis; transient state analysis; TSA;
D O I
10.1504/IJISE.2023.135774
中图分类号
学科分类号
摘要
In this research paper a methodology is presented for prediction of performance parameters of a series parallel industrial system. The particle swarm optimisation (PSO) technique is used for evaluating the performance of industrial system and the Markov method is used for mathematical modelling. The mean time to failure is calculated to be 352 days and it is observed that after 30 days the reliability of the system became steady state which shows the bathtub behaviour. Using the PSO technique for maximising the system availability (SA) with ranges of performance parameters selected from the real industrial system, the different economical possible performance measures for maximum availability is predicted which are helpful for reduction in cost of production. From the performance analysis the optimised availability using PSO is estimated 94.25% whereas it is 93.60% using Markov method. © 2023 Inderscience Enterprises Ltd.
引用
收藏
页码:432 / 457
页数:25
相关论文
共 50 条
  • [41] CriPS: Critical Particle Swarm Optimisation
    Erskine, Adam
    Herrmann, J. Michael
    ECAL 2015: THE THIRTEENTH EUROPEAN CONFERENCE ON ARTIFICIAL LIFE, 2015, : 207 - 214
  • [42] Preserving diversity in particle swarm optimisation
    Hendtlass, T
    DEVELOPMENTS IN APPLIED ARTIFICIAL INTELLIGENCE, 2003, 2718 : 31 - 40
  • [43] Adaptive multifactorial particle swarm optimisation
    Tang, Zedong
    Gong, Maoguo
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2019, 4 (01) : 37 - 46
  • [44] Division of Labor in Particle Swarm Optimisation
    Vesterstrom, JS
    Riget, J
    Krink, T
    CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 1570 - 1575
  • [45] Stochastic stability of particle swarm optimisation
    Erskine, Adam
    Joyce, Thomas
    Herrmann, J. Michael
    SWARM INTELLIGENCE, 2017, 11 (3-4) : 295 - 315
  • [46] Particle swarm optimisation: time for uniformisation
    Luis Fernandez-Martinez, Juan
    Garcia-Gonzalo, Esperanza
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2013, 4 (01) : 16 - 33
  • [47] Perceptive particle swarm optimisation: An investigation
    Kaewkamnerdpong, B
    Bentley, PJ
    2005 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2005, : 169 - 176
  • [48] Dynamic Multi-objective Optimisation Using Multi-guide Particle Swarm Optimisation
    Jocko, Pawel
    Ombuki-Berman, Beatrice M.
    Engelbrecht, Andries P.
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [49] Economic optimisation in seabream (Sparus aurata) aquaculture production using a particle swarm optimisation algorithm
    Llorente, Ignacio
    Luna, Ladislao
    AQUACULTURE INTERNATIONAL, 2014, 22 (06) : 1837 - 1849
  • [50] Economic optimisation in seabream (Sparus aurata) aquaculture production using a particle swarm optimisation algorithm
    Ignacio Llorente
    Ladislao Luna
    Aquaculture International, 2014, 22 : 1837 - 1849