On Characterizing the Solution Sets of Pseudoinvex Extremum Problems

被引:0
|
作者
X. M. Yang
机构
[1] Chongqing Normal University,Department of Mathematics
[2] Chongqing Key Laboratory of Operations Research and System Engineering,undefined
关键词
Pseudoinvex extremum problems; Solution sets; Characterizations; Invariant pseudomonotone maps;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the minimization of a pseudoinvex function over an invex subset and provide several new and simple characterizations of the solution set of pseudoinvex extremum problems. By means of the basic properties of pseudoinvex functions, the solution set of a pseudoinvex program is characterized, for instance, by the equality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nabla f(x)^{T}\eta(\bar{x},x)=0$\end{document} , for each feasible point x, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{x}$\end{document} is in the solution set. Our study improves naturally and extends some previously known results in Mangasarian (Oper. Res. Lett. 7: 21–26, 1988) and Jeyakumar and Yang (J. Opt. Theory Appl. 87: 747–755, 1995).
引用
收藏
页码:537 / 542
页数:5
相关论文
共 50 条
  • [41] CONTRACTIBILITY OF THE SOLUTION SETS FOR SET OPTIMIZATION PROBLEMS
    Chen, Bin
    Han, Yu
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2024, 8 (05): : 717 - 730
  • [42] Topological structure of solution sets to parabolic problems
    Durikovic, V
    Durikovicová, M
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2005, 25 (02) : 313 - 348
  • [43] CONVERGENCE OF THE SOLUTION SETS FOR SET OPTIMIZATION PROBLEMS
    Ansari, Qamrul Hasan
    Hussain, Nasir
    Sharma, Pradeep Kumar
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2022, 6 (03): : 165 - 183
  • [44] On the connectedness of solution sets in linear complementarity problems
    Jones, C
    Gowda, MS
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 272 : 33 - 44
  • [45] Cone complementarity problems with finite solution sets
    Malik, M
    Mohan, SR
    OPERATIONS RESEARCH LETTERS, 2006, 34 (02) : 121 - 126
  • [46] Tensor Complementarity Problems with Finite Solution Sets
    K. Palpandi
    Sonali Sharma
    Journal of Optimization Theory and Applications, 2021, 190 : 951 - 965
  • [47] Tensor Complementarity Problems with Finite Solution Sets
    Palpandi, K.
    Sharma, Sonali
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 190 (03) : 951 - 965
  • [48] ASSOCIATIONS, SETS, AND SOLUTION OF WORD-PROBLEMS
    SAFREN, MA
    JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 1962, 64 (01): : 40 - &
  • [49] Convex Analysis and Extremum Conditions in the Theory of Extremum Problems
    V. M. Tikhomirov
    Cybernetics and Systems Analysis, 2002, 38 (3) : 323 - 338
  • [50] The stability of the solution sets for set optimization problems via improvement sets
    Mao, Jia-yu
    Wang, San-hua
    Han, Yu
    OPTIMIZATION, 2019, 68 (11) : 2168 - 2190