On Characterizing the Solution Sets of Pseudoinvex Extremum Problems

被引:0
|
作者
X. M. Yang
机构
[1] Chongqing Normal University,Department of Mathematics
[2] Chongqing Key Laboratory of Operations Research and System Engineering,undefined
关键词
Pseudoinvex extremum problems; Solution sets; Characterizations; Invariant pseudomonotone maps;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the minimization of a pseudoinvex function over an invex subset and provide several new and simple characterizations of the solution set of pseudoinvex extremum problems. By means of the basic properties of pseudoinvex functions, the solution set of a pseudoinvex program is characterized, for instance, by the equality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nabla f(x)^{T}\eta(\bar{x},x)=0$\end{document} , for each feasible point x, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{x}$\end{document} is in the solution set. Our study improves naturally and extends some previously known results in Mangasarian (Oper. Res. Lett. 7: 21–26, 1988) and Jeyakumar and Yang (J. Opt. Theory Appl. 87: 747–755, 1995).
引用
收藏
页码:537 / 542
页数:5
相关论文
共 50 条
  • [31] Solution Sets of Quadratic Complementarity Problems
    Jie Wang
    Shenglong Hu
    Zheng-Hai Huang
    Journal of Optimization Theory and Applications, 2018, 176 : 120 - 136
  • [32] ON SOLUTION SETS FOR ROBUST OPTIMIZATION PROBLEMS
    Lee, Gue Myung
    Yao, Jen-Chih
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (05) : 957 - 966
  • [33] On the solution sets of linear complementarity problems
    Murthy, GSR
    Parthasarathy, T
    Sriparna, B
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) : 1229 - 1235
  • [34] ON SOLUTION SETS FOR CONVEX OPTIMIZATION PROBLEMS
    Lee, Gue Myung
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (10) : 1733 - 1739
  • [35] Structure of solution sets to the nonlocal problems
    Cheng, Yi
    Niu, Ben
    Li, Cuiying
    BOUNDARY VALUE PROBLEMS, 2016, : 1 - 17
  • [36] Structure of solution sets to the nonlocal problems
    Yi Cheng
    Ben Niu
    Cuiying Li
    Boundary Value Problems, 2016
  • [37] Characterizing robust optimal solution sets for nonconvex uncertain semi-infinite programming problems involving tangential subdifferentials
    Liu, Juan
    Long, Xian-Jun
    Sun, Xiang-Kai
    JOURNAL OF GLOBAL OPTIMIZATION, 2023, 87 (2-4) : 481 - 501
  • [38] Characterizing robust optimal solution sets for nonconvex uncertain semi-infinite programming problems involving tangential subdifferentials
    Juan Liu
    Xian-Jun Long
    Xiang-Kai Sun
    Journal of Global Optimization, 2023, 87 : 481 - 501
  • [39] EXTREMUM PROBLEMS FOR ZONOTOPES
    FILLIMAN, P
    GEOMETRIAE DEDICATA, 1988, 27 (03) : 251 - 262
  • [40] DUAL EXTREMUM PROBLEMS
    RUBINSHTEIN, GS
    DOKLADY AKADEMII NAUK SSSR, 1963, 152 (02): : 288 - &