On Characterizing the Solution Sets of Pseudoinvex Extremum Problems

被引:0
|
作者
X. M. Yang
机构
[1] Chongqing Normal University,Department of Mathematics
[2] Chongqing Key Laboratory of Operations Research and System Engineering,undefined
关键词
Pseudoinvex extremum problems; Solution sets; Characterizations; Invariant pseudomonotone maps;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the minimization of a pseudoinvex function over an invex subset and provide several new and simple characterizations of the solution set of pseudoinvex extremum problems. By means of the basic properties of pseudoinvex functions, the solution set of a pseudoinvex program is characterized, for instance, by the equality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nabla f(x)^{T}\eta(\bar{x},x)=0$\end{document} , for each feasible point x, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{x}$\end{document} is in the solution set. Our study improves naturally and extends some previously known results in Mangasarian (Oper. Res. Lett. 7: 21–26, 1988) and Jeyakumar and Yang (J. Opt. Theory Appl. 87: 747–755, 1995).
引用
收藏
页码:537 / 542
页数:5
相关论文
共 50 条