On Characterizing the Solution Sets of Pseudoinvex Extremum Problems

被引:0
|
作者
X. M. Yang
机构
[1] Chongqing Normal University,Department of Mathematics
[2] Chongqing Key Laboratory of Operations Research and System Engineering,undefined
关键词
Pseudoinvex extremum problems; Solution sets; Characterizations; Invariant pseudomonotone maps;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the minimization of a pseudoinvex function over an invex subset and provide several new and simple characterizations of the solution set of pseudoinvex extremum problems. By means of the basic properties of pseudoinvex functions, the solution set of a pseudoinvex program is characterized, for instance, by the equality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nabla f(x)^{T}\eta(\bar{x},x)=0$\end{document} , for each feasible point x, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bar{x}$\end{document} is in the solution set. Our study improves naturally and extends some previously known results in Mangasarian (Oper. Res. Lett. 7: 21–26, 1988) and Jeyakumar and Yang (J. Opt. Theory Appl. 87: 747–755, 1995).
引用
收藏
页码:537 / 542
页数:5
相关论文
共 50 条
  • [1] On Characterizing the Solution Sets of Pseudoinvex Extremum Problems
    Yang, X. M.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 140 (03) : 537 - 542
  • [2] On Characterization of Solution Sets of Nonsmooth Pseudoinvex Minimization Problems
    Mishra, S. K.
    Lai, K. K.
    INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 2, PROCEEDINGS, 2009, : 739 - 741
  • [3] On Characterization of Solution Sets of Set-Valued Pseudoinvex Optimization Problems
    M. Oveisiha
    J. Zafarani
    Journal of Optimization Theory and Applications, 2014, 163 : 387 - 398
  • [4] On Characterization of Solution Sets of Set-Valued Pseudoinvex Optimization Problems
    Oveisiha, M.
    Zafarani, J.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 163 (02) : 387 - 398
  • [5] Characterizations of solution sets of set-valued generalized pseudoinvex optimization problems
    Ceng, Lu-Chuan
    Latif, Abdul
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (12): : 6382 - 6395
  • [6] Characterizations of the solution sets of pseudoinvex programs and variational inequalities
    Liu, Caiping
    Yang, Xinmin
    Lee, Heungwing
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [7] Characterizations of the solution sets of pseudoinvex programs and variational inequalities
    Caiping Liu
    Xinmin Yang
    Heungwing Lee
    Journal of Inequalities and Applications, 2011
  • [8] A note on characterizing solution set of nonsmooth pseudoinvex optimization problem
    Zhao, K. Q.
    Wan, X.
    Yang, X. M.
    OPTIMIZATION LETTERS, 2013, 7 (01) : 117 - 126
  • [9] A note on characterizing solution set of nonsmooth pseudoinvex optimization problem
    K. Q. Zhao
    X. Wan
    X. M. Yang
    Optimization Letters, 2013, 7 : 117 - 126
  • [10] On the Solution of Generalized Multiplicative Extremum Problems
    Alireza M. Ashtiani
    Paulo A. V. Ferreira
    Journal of Optimization Theory and Applications, 2011, 149 : 411 - 419