On the Computational Complexity of Decision Problems About Multi-player Nash Equilibria

被引:0
|
作者
Marie Louisa Tølbøll Berthelsen
Kristoffer Arnsfelt Hansen
机构
[1] Aarhus University,Department of Computer Science
来源
关键词
Nash equilibrium; Computational complexity; Existential theory of the reals;
D O I
暂无
中图分类号
学科分类号
摘要
We study the computational complexity of decision problems about Nash equilibria in m-player games. Several such problems have recently been shown to be computationally equivalent to the decision problem for the existential theory of the reals, or stated in terms of complexity classes, ∃ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\exists {\mathbb {R}}}$\end{document}-complete, when m ≥ 3. We show that, unless they turn into trivial problems, they are ∃ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\exists {\mathbb {R}}}$\end{document}-hard even for 3-player zero-sum games. We also obtain new results about several other decision problems. We show that when m ≥ 3 the problems of deciding if a game has a Pareto optimal Nash equilibrium or deciding if a game has a strong Nash equilibrium are ∃ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\exists {\mathbb {R}}}$\end{document}-complete. The latter result rectifies a previous claim of NP-completeness in the literature. We show that deciding if a game has an irrational valued Nash equilibrium is ∃ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\exists {\mathbb {R}}}$\end{document}-hard, answering a question of Bilò and Mavronicolas, and address also the computational complexity of deciding if a game has a rational valued Nash equilibrium. These results also hold for 3-player zero-sum games. Our proof methodology applies to corresponding decision problems about symmetric Nash equilibria in symmetric games as well, and in particular our new results carry over to the symmetric setting. Finally we show that deciding whether a symmetric m-player game has a non-symmetric Nash equilibrium is ∃ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\exists {\mathbb {R}}}$\end{document}-complete when m ≥ 3, answering a question of Garg, Mehta, Vazirani, and Yazdanbod.
引用
收藏
页码:519 / 545
页数:26
相关论文
共 50 条
  • [41] On the Expected Number of Equilibria in a Multi-player Multi-strategy Evolutionary Game
    Manh Hong Duong
    The Anh Han
    DYNAMIC GAMES AND APPLICATIONS, 2016, 6 (03) : 324 - 346
  • [42] Settling the complexity of computing approximate two-player Nash equilibria
    Rubistein, Aviad
    2016 IEEE 57TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2016, : 258 - 265
  • [43] Decision Problems for Nash Equilibria in Stochastic Games
    Ummels, Michael
    Wojtczak, Dominik
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2009, 5771 : 515 - +
  • [44] Strict equilibria interchangeability in multi-player zero-sum games
    Naumov, Pavel
    Simonelli, Italo
    JOURNAL OF LOGIC AND COMPUTATION, 2014, 24 (04) : 851 - 861
  • [45] Distributed Nash Equilibrium Computation for Mixed-order Multi-player Games
    Yin, Jizhao
    Ye, Maojiao
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA), 2020, : 1085 - 1090
  • [46] A reinforcement learning algorithm for obtaining the Nash equilibrium of multi-player matrix games
    Nanduri, Vishnu
    Das, Tapas K.
    IIE TRANSACTIONS, 2009, 41 (02) : 158 - 167
  • [47] Approaching the Global Nash Equilibrium of Non-Convex Multi-Player Games
    Chen, Guanpu
    Xu, Gehui
    He, Fengxiang
    Hong, Yiguang
    Rutkowski, Leszek
    Tao, Dacheng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 10797 - 10813
  • [48] Multi-player game approach to solving multi-entity problems
    Oon, WC
    Lim, A
    EIGHTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-02)/FOURTEENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-02), PROCEEDINGS, 2002, : 961 - 962
  • [49] On the uniqueness of non-reducible multi-player control problems
    Karl, Veronika
    Poerner, Frank
    OPTIMIZATION METHODS & SOFTWARE, 2021, 36 (06): : 1259 - 1288
  • [50] On the complexity of pure Nash equilibria in player-specific network congestion games
    Ackermarm, Heiner
    Skopalik, Alexander
    INTERNET AND NETWORK ECONOMICS, PROCEEDINGS, 2007, 4858 : 419 - 430