On the Computational Complexity of Decision Problems About Multi-player Nash Equilibria

被引:0
|
作者
Marie Louisa Tølbøll Berthelsen
Kristoffer Arnsfelt Hansen
机构
[1] Aarhus University,Department of Computer Science
来源
Theory of Computing Systems | 2022年 / 66卷
关键词
Nash equilibrium; Computational complexity; Existential theory of the reals;
D O I
暂无
中图分类号
学科分类号
摘要
We study the computational complexity of decision problems about Nash equilibria in m-player games. Several such problems have recently been shown to be computationally equivalent to the decision problem for the existential theory of the reals, or stated in terms of complexity classes, ∃ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\exists {\mathbb {R}}}$\end{document}-complete, when m ≥ 3. We show that, unless they turn into trivial problems, they are ∃ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\exists {\mathbb {R}}}$\end{document}-hard even for 3-player zero-sum games. We also obtain new results about several other decision problems. We show that when m ≥ 3 the problems of deciding if a game has a Pareto optimal Nash equilibrium or deciding if a game has a strong Nash equilibrium are ∃ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\exists {\mathbb {R}}}$\end{document}-complete. The latter result rectifies a previous claim of NP-completeness in the literature. We show that deciding if a game has an irrational valued Nash equilibrium is ∃ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\exists {\mathbb {R}}}$\end{document}-hard, answering a question of Bilò and Mavronicolas, and address also the computational complexity of deciding if a game has a rational valued Nash equilibrium. These results also hold for 3-player zero-sum games. Our proof methodology applies to corresponding decision problems about symmetric Nash equilibria in symmetric games as well, and in particular our new results carry over to the symmetric setting. Finally we show that deciding whether a symmetric m-player game has a non-symmetric Nash equilibrium is ∃ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\exists {\mathbb {R}}}$\end{document}-complete when m ≥ 3, answering a question of Garg, Mehta, Vazirani, and Yazdanbod.
引用
收藏
页码:519 / 545
页数:26
相关论文
共 50 条
  • [21] Computing Equilibria in Multi-Player Games
    Papadimitriou, Christos H.
    Roughgarden, Tim
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 82 - 91
  • [22] Selfish Robustness and Equilibria in Multi-Player Bandits
    Boursier, Etienne
    Perchet, Vianney
    CONFERENCE ON LEARNING THEORY, VOL 125, 2020, 125
  • [23] The Real Computational Complexity of Minmax Value and Equilibrium Refinements in Multi-player Games
    Hansen, Kristoffer Arnsfelt
    THEORY OF COMPUTING SYSTEMS, 2019, 63 (07) : 1554 - 1571
  • [24] Nash Equilibria in Certain Two-Choice Multi-Player Games Played on the Ladder Graph
    Munoz, Victoria Sanchez
    Mc Gettrick, Michael
    INTERNATIONAL GAME THEORY REVIEW, 2021, 23 (03)
  • [25] Computing correlated equilibria in multi-player games
    Papadimitriou, Christos H.
    Roughgarden, Tim
    JOURNAL OF THE ACM, 2008, 55 (03)
  • [26] The Real Computational Complexity of Minmax Value and Equilibrium Refinements in Multi-player Games
    Hansen, Kristoffer Arnsfelt
    ALGORITHMIC GAME THEORY (SAGT 2017), 2017, 10504 : 119 - 130
  • [27] The Real Computational Complexity of Minmax Value and Equilibrium Refinements in Multi-player Games
    Kristoffer Arnsfelt Hansen
    Theory of Computing Systems, 2019, 63 : 1554 - 1571
  • [28] Smoothed Complexity of 2-player Nash Equilibria
    Boodaghians, Shant
    Brakensiek, Joshua
    Hopkins, Samuel B.
    Rubinstein, Aviad
    2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020), 2020, : 271 - 282
  • [29] e-Nash Equilibria of a Multi-player Nonzero-Sum Dynkin Game in Discrete Time
    Hamadene, Said
    Hassani, Mohammed
    Morlais, Marie-Amelie
    DYNAMIC GAMES AND APPLICATIONS, 2024, 14 (03) : 642 - 664
  • [30] Multi-player Equilibria Verification for Concurrent Stochastic Games
    Kwiatkowska, Marta
    Norman, Gethin
    Parker, David
    Santos, Gabriel
    QUANTITATIVE EVALUATION OF SYSTEMS (QEST 2020), 2020, 12289 : 74 - 95