On the Computational Complexity of Decision Problems About Multi-player Nash Equilibria

被引:0
|
作者
Marie Louisa Tølbøll Berthelsen
Kristoffer Arnsfelt Hansen
机构
[1] Aarhus University,Department of Computer Science
来源
关键词
Nash equilibrium; Computational complexity; Existential theory of the reals;
D O I
暂无
中图分类号
学科分类号
摘要
We study the computational complexity of decision problems about Nash equilibria in m-player games. Several such problems have recently been shown to be computationally equivalent to the decision problem for the existential theory of the reals, or stated in terms of complexity classes, ∃ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\exists {\mathbb {R}}}$\end{document}-complete, when m ≥ 3. We show that, unless they turn into trivial problems, they are ∃ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\exists {\mathbb {R}}}$\end{document}-hard even for 3-player zero-sum games. We also obtain new results about several other decision problems. We show that when m ≥ 3 the problems of deciding if a game has a Pareto optimal Nash equilibrium or deciding if a game has a strong Nash equilibrium are ∃ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\exists {\mathbb {R}}}$\end{document}-complete. The latter result rectifies a previous claim of NP-completeness in the literature. We show that deciding if a game has an irrational valued Nash equilibrium is ∃ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\exists {\mathbb {R}}}$\end{document}-hard, answering a question of Bilò and Mavronicolas, and address also the computational complexity of deciding if a game has a rational valued Nash equilibrium. These results also hold for 3-player zero-sum games. Our proof methodology applies to corresponding decision problems about symmetric Nash equilibria in symmetric games as well, and in particular our new results carry over to the symmetric setting. Finally we show that deciding whether a symmetric m-player game has a non-symmetric Nash equilibrium is ∃ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\exists {\mathbb {R}}}$\end{document}-complete when m ≥ 3, answering a question of Garg, Mehta, Vazirani, and Yazdanbod.
引用
收藏
页码:519 / 545
页数:26
相关论文
共 50 条
  • [31] Exclusion Method for Finding Nash Equilibrium in Multi-Player Games
    Berg, Kimmo
    Sandholm, Tuomas
    AAMAS'16: PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS, 2016, : 1417 - 1418
  • [32] Multi-player game approach to scheduling problems
    Oon, WC
    Lim, A
    I-SPAN'02: INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS AND NETWORKS, PROCEEDINGS, 2002, : 205 - 209
  • [33] Settling the Complexity of Computing Two-Player Nash Equilibria
    Chen, Xi
    Deng, Xiaotie
    Teng, Shang-Hua
    JOURNAL OF THE ACM, 2009, 56 (03)
  • [34] Equilibria in multi-player multi-outcome infinite sequential games
    Le Roux, Stephane
    Pauly, Arno
    INFORMATION AND COMPUTATION, 2021, 276 (276)
  • [35] New complexity results about Nash equilibria
    Conitzer, Vincent
    Sandholm, Tuomas
    GAMES AND ECONOMIC BEHAVIOR, 2008, 63 (02) : 621 - 641
  • [36] Local Equilibria in Logic-Based Multi-Player Games
    Gutierrez, Julian
    Harrenstein, Paul
    Steeples, Thomas
    Wooldridge, Michael
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 399 - 406
  • [37] On the Expected Number and Distribution of Equilibria in Multi-player Evolutionary Games
    Manh Hong Duong
    The Anh Han
    ALIFE 2019: THE 2019 CONFERENCE ON ARTIFICIAL LIFE, 2019, : 143 - 144
  • [38] The Computational Complexity of Nash Equilibria in Concisely Represented Games
    Schoenebeck, Grant R.
    Vadhan, Salil
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2012, 4 (02)
  • [39] A Multi-player MAB Approach for Distributed Selection Problems
    Mo, Jinyu
    Xie, Hong
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2023, PT II, 2023, 13936 : 243 - 254
  • [40] On the Expected Number of Equilibria in a Multi-player Multi-strategy Evolutionary Game
    Manh Hong Duong
    The Anh Han
    Dynamic Games and Applications, 2016, 6 : 324 - 346