A unified framework of constrained regression

被引:0
|
作者
Benjamin Hofner
Thomas Kneib
Torsten Hothorn
机构
[1] Friedrich-Alexander-Universität Erlangen-Nürnberg,Institut für Medizininformatik, Biometrie und Epidemiologie
[2] Georg-August-Universität Göttingen,Lehrstuhl für Statistik
[3] Abteilung Biostatistik,Institut für Epidemiologie, Biostatistik und Prävention
[4] Universität Zürich,undefined
来源
Statistics and Computing | 2016年 / 26卷
关键词
Bivariate constraints; Cyclic constraints; Functional gradient descent boosting; Generalized additive models; Monotonic constraints; Periodic effects ;
D O I
暂无
中图分类号
学科分类号
摘要
Generalized additive models (GAMs) play an important role in modeling and understanding complex relationships in modern applied statistics. They allow for flexible, data-driven estimation of covariate effects. Yet researchers often have a priori knowledge of certain effects, which might be monotonic or periodic (cyclic) or should fulfill boundary conditions. We propose a unified framework to incorporate these constraints for both univariate and bivariate effect estimates and for varying coefficients. As the framework is based on component-wise boosting methods, variables can be selected intrinsically, and effects can be estimated for a wide range of different distributional assumptions. Bootstrap confidence intervals for the effect estimates are derived to assess the models. We present three case studies from environmental sciences to illustrate the proposed seamless modeling framework. All discussed constrained effect estimates are implemented in the comprehensive R package mboost for model-based boosting.
引用
收藏
页码:1 / 14
页数:13
相关论文
共 50 条
  • [1] A unified framework of constrained regression
    Hofner, Benjamin
    Kneib, Thomas
    Hothorn, Torsten
    STATISTICS AND COMPUTING, 2016, 26 (1-2) : 1 - 14
  • [2] A Unified Framework for Deep Symbolic Regression
    Landajuela, Mikel
    Lee, Chak Shing
    Yang, Jiachen
    Glatt, Ruben
    Santiago, Claudio
    Mundhenk, T. Nathan
    Aravena, Ignacio
    Mulcahy, Garrett
    Petersen, Brenden
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [3] A Unified Framework for the Teleoperation of Surgical Robots in Constrained Workspaces
    Marinho, Murilo M.
    Adorno, Bruno V.
    Harada, Kanako
    Deie, Kyoichi
    Deguet, Anton
    Kazanzides, Peter
    Taylor, Russell H.
    Mitsuishi, Mamoru
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 2721 - 2727
  • [4] A Unified Resource-Constrained Framework for Graph SLAM
    Paull, Liam
    Huang, Guoquan
    Leonard, John J.
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 1346 - 1353
  • [5] A Unified Framework for Volatile Organic Compound Classification and Regression
    Muezzinoglu, Mehmet K.
    Vergara, Alexander
    Huerta, Ramon
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [6] A Unified Framework for Epidemic Prediction based on Poisson Regression
    Zhang, Yu
    Cheung, William K.
    Liu, Jiming
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2015, 27 (11) : 2878 - 2892
  • [7] A Unified Framework for Clustering Constrained Data Without Locality Property
    Hu Ding
    Jinhui Xu
    Algorithmica, 2020, 82 : 808 - 852
  • [8] A unified agent-based framework for constrained graph partitioning
    Ntaflos, Lefteris
    Trimponias, George
    Papadias, Dimitris
    VLDB JOURNAL, 2019, 28 (02): : 221 - 241
  • [9] A Unified Framework for Constrained Linearization of Sensor Networks With Arbitrary Shapes
    Jia, Yufu
    Liu, Wenping
    Jiang, Guoyin
    Jiang, Hongbo
    Li, Yamin
    Yang, Yang
    Xing, Jing
    Lui, Zhicheng
    IEEE ACCESS, 2019, 7 : 112777 - 112791
  • [10] A Unified Framework for Clustering Constrained Data Without Locality Property
    Ding, Hu
    Xu, Jinhui
    ALGORITHMICA, 2020, 82 (04) : 808 - 852