Nonlinear sigma models with AdS supersymmetry in three dimensions

被引:0
|
作者
Daniel Butter
Sergei M. Kuzenko
Gabriele Tartaglino-Mazzucchelli
机构
[1] The University of Western Australia,School of Physics M013
[2] Nikhef Theory Group,undefined
关键词
Extended Supersymmetry; Superspaces; Sigma Models;
D O I
暂无
中图分类号
学科分类号
摘要
In three-dimensional anti-de Sitter (AdS) space, there exist several realizations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} -extended supersymmetry, which are traditionally labelled by two non-negative integers p ≥ q such that p + q = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document}. Different choices of p and q, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} fixed, prove to lead to different restrictions on the target space geometry of supersymmetric nonlinear σ-models. We classify all possible types of hyperkähler target spaces for the cases \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 3 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 by making use of two different realizations for the most general (p, q) supersymmetric σ-models: (i) off-shell formulations in terms of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 3 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 projective supermultiplets; and (ii) on-shell formulations in terms of covariantly chiral scalar superfields in (2,0) AdS superspace. Depending on the type of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 3, 4 AdS supersymmetry, nonlinear σ-models can support one of the following target space geometries: (i) hyperkähler cones; (ii) non-compact hyperkähler manifolds with a U(1) isometry group which acts non-trivially on the two-sphere of complex structures; (iii) arbitrary hyperkähler manifolds including compact ones. The option (iii) is realized only in the case of critical (4,0) AdS supersymmetry.
引用
收藏
相关论文
共 50 条
  • [31] Exact spectra of conformal supersymmetric nonlinear sigma models in two dimensions
    Read, N
    Saleur, H
    NUCLEAR PHYSICS B, 2001, 613 (03) : 409 - 444
  • [33] Euclidean supersymmetry, twisting and topological sigma models
    Hull, C. M.
    Lindstrom, U.
    dos Santos, L. Melo
    von Unge, R.
    Zabzine, M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (06):
  • [34] GEOMETRY OF SIGMA-MODELS WITH HETEROTIC SUPERSYMMETRY
    DELDUC, F
    KALITZIN, S
    SOKATCHEV, E
    CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (09) : 1567 - 1582
  • [35] Poisson geometry of sigma models with extended supersymmetry
    Lyakhovich, SL
    Zabzine, M
    PHYSICS LETTERS B, 2002, 548 (3-4) : 243 - 251
  • [36] Noncommutative AdS supergravity in three dimensions
    Cacciatori, S
    Martucci, L
    PHYSICS LETTERS B, 2002, 542 (3-4) : 268 - 274
  • [37] Three dimensional nonlinear sigma models in the Wilsonian renormalization method
    Higashijima, K
    Itou, E
    PROGRESS OF THEORETICAL PHYSICS, 2003, 110 (03): : 563 - 578
  • [38] Localization transition in three dimensions: Monte Carlo simulation of a nonlinear sigma model
    Dupre, T
    PHYSICAL REVIEW B, 1996, 54 (18) : 12763 - 12774
  • [39] On N =4 supersymmetry enhancements in three dimensions
    Assel, Benjamin
    Tachikawa, Yuji
    Tomasiello, Alessandro
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, (03):
  • [40] Central extensions of supersymmetry in four and three dimensions
    Ferrara, S
    Porrati, M
    PHYSICS LETTERS B, 1998, 423 (3-4) : 255 - 260