Nonlinear sigma models with AdS supersymmetry in three dimensions

被引:0
|
作者
Daniel Butter
Sergei M. Kuzenko
Gabriele Tartaglino-Mazzucchelli
机构
[1] The University of Western Australia,School of Physics M013
[2] Nikhef Theory Group,undefined
关键词
Extended Supersymmetry; Superspaces; Sigma Models;
D O I
暂无
中图分类号
学科分类号
摘要
In three-dimensional anti-de Sitter (AdS) space, there exist several realizations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} -extended supersymmetry, which are traditionally labelled by two non-negative integers p ≥ q such that p + q = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document}. Different choices of p and q, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} fixed, prove to lead to different restrictions on the target space geometry of supersymmetric nonlinear σ-models. We classify all possible types of hyperkähler target spaces for the cases \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 3 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 by making use of two different realizations for the most general (p, q) supersymmetric σ-models: (i) off-shell formulations in terms of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 3 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 projective supermultiplets; and (ii) on-shell formulations in terms of covariantly chiral scalar superfields in (2,0) AdS superspace. Depending on the type of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 3, 4 AdS supersymmetry, nonlinear σ-models can support one of the following target space geometries: (i) hyperkähler cones; (ii) non-compact hyperkähler manifolds with a U(1) isometry group which acts non-trivially on the two-sphere of complex structures; (iii) arbitrary hyperkähler manifolds including compact ones. The option (iii) is realized only in the case of critical (4,0) AdS supersymmetry.
引用
收藏
相关论文
共 50 条
  • [11] NON-LINEAR SIGMA-MODELS WITH EXTENDED SUPERSYMMETRY IN 4 DIMENSIONS
    CURTRIGHT, TL
    FREEDMAN, DZ
    PHYSICS LETTERS B, 1980, 90 (1-2) : 71 - 74
  • [12] Generalized supersymmetry and sigma models
    Banerjee, Rabin
    Upadhyay, Sudhaker
    PHYSICS LETTERS B, 2014, 734 : 369 - 376
  • [13] Manifest supersymmetry for BPS walls in N=2 nonlinear sigma models
    Arai, M
    Naganuma, M
    Nitta, M
    Sakai, N
    NUCLEAR PHYSICS B, 2003, 652 (1-3) : 35 - 71
  • [14] NONLINEAR-SIGMA MODELS AND SUPERSYMMETRY-BREAKING EFFECTS IN SUPERGRAVITY
    GOTO, T
    OKADA, Y
    PHYSICAL REVIEW D, 1992, 45 (10): : 3636 - 3640
  • [15] Octonions and supersymmetry in three dimensions
    Nishino, Hitoshi
    Rajpoot, Subhash
    CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (19)
  • [16] Supersymmetry and bosonization in three dimensions
    Edelstein, JD
    Nunez, C
    PHYSICS LETTERS B, 1998, 420 (3-4) : 300 - 306
  • [17] Supersymmetry and superstrata in three dimensions
    Houppe, Anthony
    Warner, Nicholas P.
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (08)
  • [18] Supersymmetry and superstrata in three dimensions
    Anthony Houppe
    Nicholas P. Warner
    Journal of High Energy Physics, 2021
  • [19] The geometry of sigma models with twisted supersymmetry
    Abou Zeid, M
    Hull, CM
    NUCLEAR PHYSICS B, 1999, 561 (1-2) : 293 - 315
  • [20] Lattice sigma models with exact supersymmetry
    Catterall, S
    Ghadab, S
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (05):