Nonlinear sigma models with AdS supersymmetry in three dimensions

被引:0
|
作者
Daniel Butter
Sergei M. Kuzenko
Gabriele Tartaglino-Mazzucchelli
机构
[1] The University of Western Australia,School of Physics M013
[2] Nikhef Theory Group,undefined
关键词
Extended Supersymmetry; Superspaces; Sigma Models;
D O I
暂无
中图分类号
学科分类号
摘要
In three-dimensional anti-de Sitter (AdS) space, there exist several realizations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} -extended supersymmetry, which are traditionally labelled by two non-negative integers p ≥ q such that p + q = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document}. Different choices of p and q, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} fixed, prove to lead to different restrictions on the target space geometry of supersymmetric nonlinear σ-models. We classify all possible types of hyperkähler target spaces for the cases \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 3 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 by making use of two different realizations for the most general (p, q) supersymmetric σ-models: (i) off-shell formulations in terms of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 3 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 projective supermultiplets; and (ii) on-shell formulations in terms of covariantly chiral scalar superfields in (2,0) AdS superspace. Depending on the type of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 3, 4 AdS supersymmetry, nonlinear σ-models can support one of the following target space geometries: (i) hyperkähler cones; (ii) non-compact hyperkähler manifolds with a U(1) isometry group which acts non-trivially on the two-sphere of complex structures; (iii) arbitrary hyperkähler manifolds including compact ones. The option (iii) is realized only in the case of critical (4,0) AdS supersymmetry.
引用
收藏
相关论文
共 50 条
  • [21] The structure of N=2 supersymmetric nonlinear sigma models in AdS4
    Butter, Daniel
    Kuzenko, Sergei M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (11):
  • [22] Soft supersymmetry breaking in the nonlinear sigma model
    Ibiapina Bevilaqua, L.
    Lehum, A. C.
    da Silva, A. J.
    PHYSICS LETTERS B, 2019, 789 : 150 - 153
  • [23] SPONTANEOUS SUPERSYMMETRY BREAKING IN THE GAUGE-INVARIANT SUPERSYMMETRIC NONLINEAR SIGMA-MODELS
    CHUN, EJ
    PHYSICAL REVIEW D, 1990, 41 (06): : 2003 - 2008
  • [24] SUPERSYMMETRY AND GEOMETRY IN D LESS-THAN 4 NONLINEAR SIGMA-MODELS
    ATKINSON, G
    CHATTOPADHYAY, U
    GATES, SJ
    ANNALS OF PHYSICS, 1986, 168 (02) : 387 - 403
  • [25] D=2 SUPERFIELD SUPERGRAVITY, LOCAL (SUPERSYMMETRY)2 AND NONLINEAR SIGMA-MODELS
    GATES, SJ
    NISHINO, H
    CLASSICAL AND QUANTUM GRAVITY, 1986, 3 (03) : 391 - 399
  • [26] Supersymmetry and superfields in three Euclidean dimensions
    McKeon, DGC
    Sherry, TN
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2002, 41 (12) : 2369 - 2393
  • [27] Squashing and supersymmetry enhancement in three dimensions
    Minahan, Joseph
    Naseer, Usman
    Thull, Charles
    SCIPOST PHYSICS, 2022, 12 (01):
  • [28] A HIGHER-ORDER ANALYSIS OF THE EFFECTS OF BREAKING SUPERSYMMETRY FOR NONLINEAR SIGMA-MODELS
    HELAYELNETO, JA
    SMITH, AW
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1990, 5 (09): : 1723 - 1744
  • [29] On the finiteness of the N=4 SUSY nonlinear sigma model in three dimensions
    Inami, T
    Saito, Y
    Yamamoto, M
    PHYSICS LETTERS B, 2000, 495 (1-2) : 245 - 250
  • [30] Supersymmetry and Superfields in Three Euclidean Dimensions
    D. G. C. McKeon
    T. N. Sherry
    International Journal of Theoretical Physics, 2002, 41 : 2369 - 2393