Nonlinear sigma models with AdS supersymmetry in three dimensions

被引:0
|
作者
Daniel Butter
Sergei M. Kuzenko
Gabriele Tartaglino-Mazzucchelli
机构
[1] The University of Western Australia,School of Physics M013
[2] Nikhef Theory Group,undefined
关键词
Extended Supersymmetry; Superspaces; Sigma Models;
D O I
暂无
中图分类号
学科分类号
摘要
In three-dimensional anti-de Sitter (AdS) space, there exist several realizations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} -extended supersymmetry, which are traditionally labelled by two non-negative integers p ≥ q such that p + q = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document}. Different choices of p and q, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} fixed, prove to lead to different restrictions on the target space geometry of supersymmetric nonlinear σ-models. We classify all possible types of hyperkähler target spaces for the cases \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 3 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 by making use of two different realizations for the most general (p, q) supersymmetric σ-models: (i) off-shell formulations in terms of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 3 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 projective supermultiplets; and (ii) on-shell formulations in terms of covariantly chiral scalar superfields in (2,0) AdS superspace. Depending on the type of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 3, 4 AdS supersymmetry, nonlinear σ-models can support one of the following target space geometries: (i) hyperkähler cones; (ii) non-compact hyperkähler manifolds with a U(1) isometry group which acts non-trivially on the two-sphere of complex structures; (iii) arbitrary hyperkähler manifolds including compact ones. The option (iii) is realized only in the case of critical (4,0) AdS supersymmetry.
引用
收藏
相关论文
共 50 条
  • [1] Nonlinear sigma models with AdS supersymmetry in three dimensions
    Butter, Daniel
    Kuzenko, Sergei M.
    Tartaglino-Mazzucchelli, Gabriele
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (02):
  • [2] SUPERSYMMETRY AND NONLINEAR SIGMA-MODELS
    ROCEK, M
    PHYSICA D, 1985, 15 (1-2): : 75 - 82
  • [3] Nonlinear realization of partially broken N=2 AdS supersymmetry in two and three dimensions
    Sano, M
    Uematsu, T
    PHYSICS LETTERS B, 2001, 503 (3-4) : 413 - 422
  • [4] Supersymmetry-breaking nonlinear sigma models
    Imai, Takumi
    Izawa, K-I
    Nakai, Yuichiro
    PHYSICS LETTERS B, 2012, 717 (1-3) : 257 - 260
  • [5] SPONTANEOUS SUPERSYMMETRY BREAKING IN NONLINEAR SIGMA-MODELS
    GOITY, JL
    NUCLEAR PHYSICS B, 1986, 269 (3-4) : 587 - 595
  • [6] Superconformal sigma models in three dimensions
    Bergshoeff, E.
    Cecotti, S.
    Samtleben, H.
    Sezgin, E.
    NUCLEAR PHYSICS B, 2010, 838 (03) : 266 - 297
  • [7] Off-shell superconformal nonlinear sigma-models in three dimensions
    Sergei M. Kuzenko
    Jeong-Hyuck Park
    Gabriele Tartaglino-Mazzucchelli
    Rikard von Unge
    Journal of High Energy Physics, 2011
  • [8] Off-shell superconformal nonlinear sigma-models in three dimensions
    Kuzenko, Sergei M.
    Park, Jeong-Hyuck
    Tartaglino-Mazzucchelli, Gabriele
    von Unge, Rikard
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (01):
  • [9] Supersymmetry breaking in the three-dimensional nonlinear sigma model
    Lehum, A. C.
    da Silva, A. J.
    PHYSICAL REVIEW D, 2013, 88 (06):
  • [10] Higher spin supermultiplets in three dimensions: (2,0) AdS supersymmetry
    Hutomo, Jessica
    Kuzenko, Sergei M.
    PHYSICS LETTERS B, 2018, 787 : 175 - 181