Electrical and optical emission measurements of a capillary dielectric barrier discharge

被引:0
|
作者
J. Mahoney
W. Zhu
V. S. Johnson
K. H. Becker
J. L. Lopez
机构
[1] CMST (Center for Microplasma Science and Technology),Department of Physics and Engineering Physics
[2] Saint Peter’s College,undefined
[3] Polytechnic Institute of New York University,undefined
来源
关键词
Optical Emission Spectroscopy; Dielectric Barrier Discharge; Dielectric Barrier Discharge Reactor; Optical Emission Spectrum; Negative System;
D O I
暂无
中图分类号
学科分类号
摘要
We report a capillary dielectric barrier discharge (Cap-DBD) plasma operated in atmospheric pressure air. The plasma reactor consists of metal wire electrodes inside quartz capillary tubes powered with a low kilohertz frequency AC high voltage power supply. Various reactor geometries (planar, 3-D multilayer, and circular) with wall-to-wall separation ranging from zero up to 500 micron were investigated. For the electrical and spectral measurements, three reactors, each with six tubes, six inches in length, were assembled with gap widths of 500 micron, 225 micron, and 0 micron (i.e. tubes touching). The discharges appear homogenous across the whole device at separations below 225 micron and turned into filamentary discharges at larger gap spaces. The operating voltage was generally around 3–4 kV (rms). The power consumption by the Cap-DBD was calculated using voltage/charge Lissajous figures with observed powers of a few watts to a maximum of about 14 W for the reactor with no gap spacing. Further studies of optical emission spectroscopy (OES) were employed to evaluate the reactive species generated in the microplasma source. The observed emission spectrum was predominantly within the second positive system of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{N}_2$\end{document}(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{C}^3$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Pi_u$\end{document}–\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{B}^3$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Pi_g$\end{document}) and the first negative system of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{N}^+_2$\end{document}(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{B}^2$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma^+_u$\end{document}–\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{X}^2$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma^+_g$\end{document}).
引用
收藏
页码:441 / 447
页数:6
相关论文
共 50 条
  • [41] Current scaling in an atmospheric pressure capillary dielectric barrier discharge
    Sands, Brian L.
    Huang, Shih K.
    Ganguly, Biswa N.
    APPLIED PHYSICS LETTERS, 2009, 95 (05)
  • [42] On electric field measurements in surface dielectric barrier discharge
    Starikovskaia, S. M.
    Allegraud, K.
    Guaitella, O.
    Rousseau, A.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (12)
  • [43] Diagnostics of Argon Inductively Coupled Plasma and Dielectric Barrier Discharge Plasma by Optical Emission Spectroscopy
    张家良
    俞世吉
    马滕才
    邓新绿
    Plasma Science & Technology, 2001, (04) : 883 - 890
  • [44] Atmospheric-pressure dielectric-barrier discharge as a radiation source for optical emission spectrometry
    Yu, Yongliang
    Du, Zhuo
    Chen, Mingli
    Wang, Jianhua
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (41) : 7909 - 7912
  • [45] Study on Homogeneity of Low-Pressure Air Dielectric Barrier Discharge by Optical Emission Spectrum
    Dong Li-fang
    Wang Shuai
    Liu Wei-yuan
    Yang Yu-jie
    Yue Han
    Xiao Hong
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2011, 31 (02) : 328 - 330
  • [46] Study on the microdischarge in dielectric barrier discharge by optical method
    Yin, ZQ
    Dong, LF
    Li, XC
    He, YF
    Dong, GY
    Chai, ZF
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2003, 23 (03) : 607 - 608
  • [47] Role of secondary emission on discharge dynamics in an atmospheric pressure dielectric barrier discharge
    Tay, W. H.
    Kausik, S. S.
    Yap, S. L.
    Wong, C. S.
    PHYSICS OF PLASMAS, 2014, 21 (04)
  • [48] Emission spectroscopy of combustion flame pulsed by dielectric barrier discharge
    Li, G. (ligang@iet.cn), 1600, Science Press (35):
  • [49] Portable Dielectric Barrier Discharge-Atomic Emission Spectrometer
    Li, Na
    Wu, Zhongchen
    Wang, Yingying
    Zhang, Jing
    Zhang, Xiangnan
    Zhang, Hengnan
    Wu, Wenhai
    Gao, Jing
    Jiang, Jie
    ANALYTICAL CHEMISTRY, 2017, 89 (04) : 2205 - 2210
  • [50] The fluorescence emission spectrum of NO in dielectric barrier discharge (DBD) plasma
    Zhang, LS
    Li, Y
    Zhao, XH
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2003, 23 (01) : 140 - 142