Electrical and optical emission measurements of a capillary dielectric barrier discharge

被引:0
|
作者
J. Mahoney
W. Zhu
V. S. Johnson
K. H. Becker
J. L. Lopez
机构
[1] CMST (Center for Microplasma Science and Technology),Department of Physics and Engineering Physics
[2] Saint Peter’s College,undefined
[3] Polytechnic Institute of New York University,undefined
来源
关键词
Optical Emission Spectroscopy; Dielectric Barrier Discharge; Dielectric Barrier Discharge Reactor; Optical Emission Spectrum; Negative System;
D O I
暂无
中图分类号
学科分类号
摘要
We report a capillary dielectric barrier discharge (Cap-DBD) plasma operated in atmospheric pressure air. The plasma reactor consists of metal wire electrodes inside quartz capillary tubes powered with a low kilohertz frequency AC high voltage power supply. Various reactor geometries (planar, 3-D multilayer, and circular) with wall-to-wall separation ranging from zero up to 500 micron were investigated. For the electrical and spectral measurements, three reactors, each with six tubes, six inches in length, were assembled with gap widths of 500 micron, 225 micron, and 0 micron (i.e. tubes touching). The discharges appear homogenous across the whole device at separations below 225 micron and turned into filamentary discharges at larger gap spaces. The operating voltage was generally around 3–4 kV (rms). The power consumption by the Cap-DBD was calculated using voltage/charge Lissajous figures with observed powers of a few watts to a maximum of about 14 W for the reactor with no gap spacing. Further studies of optical emission spectroscopy (OES) were employed to evaluate the reactive species generated in the microplasma source. The observed emission spectrum was predominantly within the second positive system of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{N}_2$\end{document}(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{C}^3$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Pi_u$\end{document}–\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{B}^3$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Pi_g$\end{document}) and the first negative system of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{N}^+_2$\end{document}(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{B}^2$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma^+_u$\end{document}–\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{X}^2$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma^+_g$\end{document}).
引用
收藏
页码:441 / 447
页数:6
相关论文
共 50 条
  • [21] ELECTRICAL CHARACTERISTICS OF A COAXIAL DIELECTRIC BARRIER DISCHARGE
    PASHAIE, B
    DHALI, SK
    HONEA, FI
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1994, 27 (10) : 2107 - 2110
  • [22] Plasma Characteristics of Capillary Coplanar Dielectric Barrier Discharge
    Wang R.
    Peng B.
    Jiang N.
    Li J.
    Wu Y.
    Gaodianya Jishu/High Voltage Engineering, 2023, 49 (10): : 4445 - 4457
  • [23] Spatially and Temporally Resolved Detection of Arsenic in a Capillary Dielectric Barrier Discharge by Hydride Generation High-Resolved Optical Emission Spectrometry
    Burhenn, Sebastian
    Kratzer, Jan
    Svoboda, Milan
    Klute, Felix David
    Michels, Antje
    Veza, Damir
    Franzke, Joachim
    ANALYTICAL CHEMISTRY, 2018, 90 (05) : 3424 - 3429
  • [24] Study on Formation Process of Honeycomb Pattern in Dielectric Barrier Discharge by Optical Emission Spectrum
    Dong Li-fang
    Zhu Ping
    Yang Jing
    Zhang Yu
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34 (04) : 915 - 918
  • [25] The determination of unsymmetrical dimethyl hydrazine by dielectric barrier discharge-optical emission spectroscopy
    Wu, Defu
    Xiong, Si
    Wang, Qiang
    Song, Yu
    Xing, Yuan
    Li, Jinhua
    Zhou, Baoxue
    Chinese Journal of Analysis Laboratory, 2022, 41 (06) : 635 - 638
  • [26] Optical emission spectroscopy investigation of a surface dielectric barrier discharge plasma aerodynamic actuator
    Engineering College, Air Force Engineering University, Xi'an 710038, China
    不详
    Chin. Phys. Lett., 2008, 11 (4068-4071):
  • [27] Study on A White-Eye Pattern in Dielectric Barrier Discharge by Optical Emission Spectrum
    Zhu Ping
    Dong Li-fang
    Yang Jing
    Zhang Yu
    Zhang Chao
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35 (06) : 1493 - 1496
  • [28] Optical Emission Spectroscopy Investigation of a Surface Dielectric Barrier Discharge Plasma Aerodynamic Actuator
    Li Ying-Hong
    Wu Yun
    Jia Min
    Zhou Zhang-Wen
    Guo Zhi-Gang
    Pu Yi-Kang
    CHINESE PHYSICS LETTERS, 2008, 25 (11) : 4068 - 4071
  • [29] Advances in dielectric barrier discharge-optical emission spectrometry for the analysis of trace species
    Yu, Yong-Liang
    Zhuang, Yu-Ting
    Wang, Jian-Hua
    ANALYTICAL METHODS, 2015, 7 (05) : 1660 - 1666
  • [30] Study on Energy Transfer in Argon/Air in Dielectric Barrier Discharge by Optical Emission Spectra
    Dong Li-Fang
    Qi Yu-yan
    Zhao Zeng-chao
    Li Yong-hui
    Li Xue-chen
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2008, 28 (11) : 2491 - 2493