Electrical and optical emission measurements of a capillary dielectric barrier discharge

被引:0
|
作者
J. Mahoney
W. Zhu
V. S. Johnson
K. H. Becker
J. L. Lopez
机构
[1] CMST (Center for Microplasma Science and Technology),Department of Physics and Engineering Physics
[2] Saint Peter’s College,undefined
[3] Polytechnic Institute of New York University,undefined
来源
关键词
Optical Emission Spectroscopy; Dielectric Barrier Discharge; Dielectric Barrier Discharge Reactor; Optical Emission Spectrum; Negative System;
D O I
暂无
中图分类号
学科分类号
摘要
We report a capillary dielectric barrier discharge (Cap-DBD) plasma operated in atmospheric pressure air. The plasma reactor consists of metal wire electrodes inside quartz capillary tubes powered with a low kilohertz frequency AC high voltage power supply. Various reactor geometries (planar, 3-D multilayer, and circular) with wall-to-wall separation ranging from zero up to 500 micron were investigated. For the electrical and spectral measurements, three reactors, each with six tubes, six inches in length, were assembled with gap widths of 500 micron, 225 micron, and 0 micron (i.e. tubes touching). The discharges appear homogenous across the whole device at separations below 225 micron and turned into filamentary discharges at larger gap spaces. The operating voltage was generally around 3–4 kV (rms). The power consumption by the Cap-DBD was calculated using voltage/charge Lissajous figures with observed powers of a few watts to a maximum of about 14 W for the reactor with no gap spacing. Further studies of optical emission spectroscopy (OES) were employed to evaluate the reactive species generated in the microplasma source. The observed emission spectrum was predominantly within the second positive system of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{N}_2$\end{document}(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{C}^3$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Pi_u$\end{document}–\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{B}^3$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Pi_g$\end{document}) and the first negative system of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{N}^+_2$\end{document}(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{B}^2$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma^+_u$\end{document}–\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{X}^2$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma^+_g$\end{document}).
引用
收藏
页码:441 / 447
页数:6
相关论文
共 50 条
  • [31] Study on Stable Process of Hexagon Pattern in Dielectric Barrier Discharge by Optical Emission Spectra
    Dong Li-fang
    Zhang Chao
    Zhang Xin-pu
    Zhao Long-hu
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33 (11) : 2903 - 2906
  • [32] Optical emission kinetics of argon inductively coupled plasma and argon dielectric barrier discharge
    Zhang, JL
    Yu, SJ
    Ma, TC
    VACUUM, 2002, 65 (3-4) : 327 - 333
  • [33] Electrical and optical characteristics of the radio frequency surface dielectric barrier discharge plasma actuation
    王蔚龙
    宋慧敏
    李军
    贾敏
    吴云
    金迪
    Chinese Physics B, 2016, (04) : 235 - 242
  • [34] Electrical and optical characteristics of the radio frequency surface dielectric barrier discharge plasma actuation
    Wang, Wei-Long
    Song, Hui-Min
    Li, Jun
    Jia, Min
    Wu, Yun
    Jin, Di
    CHINESE PHYSICS B, 2016, 25 (04)
  • [35] Discharge and Optical Emission Spectrum Characteristics of a Coaxial Dielectric Barrier Discharge Plasma-Assisted Combustion Actuator
    Liu, Pengfei
    He, Liming
    Zhao, Bingbing
    JOURNAL OF SPECTROSCOPY, 2020, 2020
  • [36] Study on Square Super-Lattice Pattern with Surface Discharge in Dielectric Barrier Discharge by Optical Emission Spectra
    Niu Xue-jiao
    Dong Li-fang
    Liu Ying
    Wang Qian
    Feng Jian-yu
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36 (02) : 368 - 371
  • [37] Electrical behavior of a filamentary xenon dielectric barrier discharge
    Merbahi, N
    Sewraj, N
    Marchal, F
    Ledru, G
    LIGHT SOURCES 2004, 2004, (182): : 427 - 428
  • [38] Discharge analysis and electrical modeling for the development of efficient dielectric barrier discharge
    Pal, U. N.
    Kumar, M.
    Tyagi, M. S.
    Meena, B. L.
    Khatun, H.
    Sharma, A. K.
    23RD NATIONAL SYMPOSIUM ON PLASMA SCIENCE AND TECHNOLOGY (PLASMA-2008), 2010, 208
  • [39] Electrical characteristics of microcavity structure dielectric barrier discharge
    Sun, Yanzhou
    Sun, Niannian
    Gong, Yinmiao
    Gaodianya Jishu/High Voltage Engineering, 2015, 41 (12): : 4008 - 4013
  • [40] Electrical modeling of an homogeneous dielectric barrier discharge (DBD)
    Bhosle, S
    Zissis, G
    Damelincourt, JJ
    Capdevila, A
    Gupta, K
    Dawson, FP
    Tarasenko, VF
    Conference Record of the 2005 IEEE Industry Applications Conference, Vols 1-4, 2005, : 2315 - 2319