Electrical and optical emission measurements of a capillary dielectric barrier discharge

被引:0
|
作者
J. Mahoney
W. Zhu
V. S. Johnson
K. H. Becker
J. L. Lopez
机构
[1] CMST (Center for Microplasma Science and Technology),Department of Physics and Engineering Physics
[2] Saint Peter’s College,undefined
[3] Polytechnic Institute of New York University,undefined
来源
关键词
Optical Emission Spectroscopy; Dielectric Barrier Discharge; Dielectric Barrier Discharge Reactor; Optical Emission Spectrum; Negative System;
D O I
暂无
中图分类号
学科分类号
摘要
We report a capillary dielectric barrier discharge (Cap-DBD) plasma operated in atmospheric pressure air. The plasma reactor consists of metal wire electrodes inside quartz capillary tubes powered with a low kilohertz frequency AC high voltage power supply. Various reactor geometries (planar, 3-D multilayer, and circular) with wall-to-wall separation ranging from zero up to 500 micron were investigated. For the electrical and spectral measurements, three reactors, each with six tubes, six inches in length, were assembled with gap widths of 500 micron, 225 micron, and 0 micron (i.e. tubes touching). The discharges appear homogenous across the whole device at separations below 225 micron and turned into filamentary discharges at larger gap spaces. The operating voltage was generally around 3–4 kV (rms). The power consumption by the Cap-DBD was calculated using voltage/charge Lissajous figures with observed powers of a few watts to a maximum of about 14 W for the reactor with no gap spacing. Further studies of optical emission spectroscopy (OES) were employed to evaluate the reactive species generated in the microplasma source. The observed emission spectrum was predominantly within the second positive system of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{N}_2$\end{document}(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{C}^3$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Pi_u$\end{document}–\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{B}^3$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Pi_g$\end{document}) and the first negative system of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{N}^+_2$\end{document}(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{B}^2$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma^+_u$\end{document}–\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mbox{X}^2$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma^+_g$\end{document}).
引用
收藏
页码:441 / 447
页数:6
相关论文
共 50 条
  • [1] Electrical and optical emission measurements of a capillary dielectric barrier discharge
    Mahoney, J.
    Zhu, W.
    Johnson, V. S.
    Becker, K. H.
    Lopez, J. L.
    EUROPEAN PHYSICAL JOURNAL D, 2010, 60 (03): : 441 - 447
  • [2] Optical emission spectroscopy measurements within a single microdischarge of a dielectric barrier discharge actuator
    Stanfield, S. A.
    Menart, J.
    APPLIED PHYSICS LETTERS, 2013, 103 (05)
  • [3] Optical Emission Characteristics of Atmospheric Pressure Dielectric Barrier Discharge
    Kim, Jin Gi
    Kim, Yoon Kee
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2015, 25 (02): : 100 - 106
  • [4] Research on Electrical Characteristics of Dielectric Barrier Discharge and Dielectric Barrier Corona Discharge
    Sun, Yanzhou
    Zeng, Mi
    Cui, Zhiyong
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2012, 51 (09)
  • [5] OPTICAL EMISSION SPECTROSCOPY MEASUREMENTS OF QUIESCENT ATMOSPHERIC PLASMAS CREATED VIA DIELECTRIC BARRIER DISCHARGE ACTUATORS
    Lam, Derrick C.
    Schneck, William C., III
    Ferrar, Anthony M.
    Winfrey, A. Leigh
    2016 43RD IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCE (ICOPS), 2016,
  • [6] Optical emission spectrum of filamentary nanosecond surface dielectric barrier discharge
    Shcherbanev, S. A.
    Khomenko, A. Yu
    Stepanyan, S. A.
    Popov, N. A.
    Starikovskaia, S. M.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2017, 26 (02):
  • [7] Diagnosis of the electron temperature in dielectric barrier discharge by optical emission spectroscopy
    Ran, JX
    Dong, LF
    Mao, ZG
    Liu, SH
    Optical Design and Testing II, Pts 1 and 2, 2005, 5638 : 561 - 566
  • [8] Optical and electrical characterization of a surface dielectric barrier discharge plasma actuator
    Biganzoli, I.
    Barni, R.
    Riccardi, C.
    Gurioli, A.
    Pertile, R.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2013, 22 (02):
  • [9] SURFACE DIELECTRIC BARRIER DISCHARGE ACTUATOR: ELECTRICAL, OPTICAL AND MECHANICAL CHARACTERIZATION
    Moreau, E.
    Benard, N.
    2015 42ND IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCES (ICOPS), 2015,
  • [10] Liquid analysis dielectric capillary barrier discharge
    Sven Tombrink
    Saskia Müller
    Richard Heming
    Antje Michels
    Peter Lampen
    Joachim Franzke
    Analytical and Bioanalytical Chemistry, 2010, 397 : 2917 - 2922