The Monotone Extended Second-Order Cone and Mixed Complementarity Problems

被引:0
|
作者
Yingchao Gao
Sándor Zoltán Németh
Roman Sznajder
机构
[1] University of Birmingham,
[2] Bowie State University,undefined
关键词
Monotone extended second-order cone; Lyapunov rank; Complementarity problems; 26B35; 90C33; 49K45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a new generalization of the Lorentz cone L+n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{L}^n_+$$\end{document}, called the monotone extended second-order cone (MESOC). We investigate basic properties of MESOC including computation of its Lyapunov rank and proving its reducibility. Moreover, we show that in an ambient space, a cylinder is an isotonic projection set with respect to MESOC. We also examine a nonlinear complementarity problem on a cylinder, which is equivalent to a suitable mixed complementarity problem, and provide a computational example illustrating applicability of MESOC.
引用
收藏
页码:381 / 407
页数:26
相关论文
共 50 条
  • [41] A second-order cone linear complementarity approach for contact problems with orthotropic friction law
    Li, Jianyu
    Zhang, Hongwu
    Pan, Shaohua
    Guti Lixue Xuebao/Acta Mechanica Solida Sinica, 2010, 31 (02): : 109 - 118
  • [42] SOR-Like Iteration Methods for Second-Order Cone Linear Complementarity Problems
    Li, Zhizhi
    Ke, Yifen
    Zhang, Huai
    Chu, Risheng
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2020, 10 (02) : 295 - 315
  • [43] Verifiable sufficient conditions for the error bound property of second-order cone complementarity problems
    Ye, Jane J.
    Zhou, Jinchuan
    MATHEMATICAL PROGRAMMING, 2018, 171 (1-2) : 361 - 395
  • [44] The Matrix Splitting Iteration Method for Nonlinear Complementarity Problems Associated with Second-Order Cone
    Ke, Yifen
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (01) : 31 - 53
  • [45] On the Lipschitz continuity of the solution map in linear complementarity problems over second-order cone
    Balaji, R.
    Palpandi, K.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 510 : 146 - 159
  • [46] Verifiable sufficient conditions for the error bound property of second-order cone complementarity problems
    Jane J. Ye
    Jinchuan Zhou
    Mathematical Programming, 2018, 171 : 361 - 395
  • [47] A matrix-splitting method for symmetric affine second-order cone complementarity problems
    Hayashi, S
    Yamaguchi, T
    Yamashita, N
    Fukushima, M
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 175 (02) : 335 - 353
  • [48] A continuation method for the linear second-order cone complementarity problem
    Xia, Y
    Peng, JM
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, VOL 4, PROCEEDINGS, 2005, 3483 : 290 - 300
  • [49] On the Range of the Pseudomonotone Second-Order Cone Linear Complementarity Problem
    Yang, Wei Hong
    Zhang, Lei-Hong
    Shen, Chungen
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 173 (02) : 504 - 522
  • [50] On the Range of the Pseudomonotone Second-Order Cone Linear Complementarity Problem
    Wei Hong Yang
    Lei-Hong Zhang
    Chungen Shen
    Journal of Optimization Theory and Applications, 2017, 173 : 504 - 522