The Monotone Extended Second-Order Cone and Mixed Complementarity Problems

被引:0
|
作者
Yingchao Gao
Sándor Zoltán Németh
Roman Sznajder
机构
[1] University of Birmingham,
[2] Bowie State University,undefined
关键词
Monotone extended second-order cone; Lyapunov rank; Complementarity problems; 26B35; 90C33; 49K45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a new generalization of the Lorentz cone L+n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{L}^n_+$$\end{document}, called the monotone extended second-order cone (MESOC). We investigate basic properties of MESOC including computation of its Lyapunov rank and proving its reducibility. Moreover, we show that in an ambient space, a cylinder is an isotonic projection set with respect to MESOC. We also examine a nonlinear complementarity problem on a cylinder, which is equivalent to a suitable mixed complementarity problem, and provide a computational example illustrating applicability of MESOC.
引用
收藏
页码:381 / 407
页数:26
相关论文
共 50 条
  • [31] A semidefinite relaxation method for second-order cone tensor eigenvalue complementarity problems
    Cheng, Lulu
    Zhang, Xinzhen
    Ni, Guyan
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 79 (03) : 715 - 732
  • [32] A semidefinite relaxation method for second-order cone tensor eigenvalue complementarity problems
    Lulu Cheng
    Xinzhen Zhang
    Guyan Ni
    Journal of Global Optimization, 2021, 79 : 715 - 732
  • [33] Characterization of Q-property for cone automorphisms in second-order cone linear complementarity problems
    Mondal, Chiranjit
    Balaji, R.
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 6155 - 6175
  • [34] A proximal gradient descent method for the extended second-order cone linear complementarity problem
    Pan, Shaohua
    Chen, Jein-Shan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (01) : 164 - 180
  • [35] EXACT FORMULA FOR THE SECOND-ORDER TANGENT SET OF THE SECOND-ORDER CONE COMPLEMENTARITY SET
    Chen, Jein-Shan
    Ye, Jane J.
    Zhang, Jin
    Zhou, Jinchuan
    SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (04) : 2986 - 3011
  • [36] An approximate lower order penalty approach for solving second-order cone linear complementarity problems
    Zijun Hao
    Chieu Thanh Nguyen
    Jein-Shan Chen
    Journal of Global Optimization, 2022, 83 : 671 - 697
  • [37] An approximate lower order penalty approach for solving second-order cone linear complementarity problems
    Hao, Zijun
    Nguyen, Chieu Thanh
    Chen, Jein-Shan
    JOURNAL OF GLOBAL OPTIMIZATION, 2022, 83 (04) : 671 - 697
  • [38] THE SECOND-ORDER CONE QUADRATIC EIGENVALUE COMPLEMENTARITY PROBLEM
    Iusem, Alfredo N.
    Judice, Joaquim J.
    Sessa, Valentina
    Sherali, Hanif D.
    PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (03): : 475 - 500
  • [39] The convex and monotone functions associated with second-order cone
    Chen, Jein-Shan
    OPTIMIZATION, 2006, 55 (04) : 363 - 385
  • [40] The Matrix Splitting Iteration Method for Nonlinear Complementarity Problems Associated with Second-Order Cone
    Yifen Ke
    Bulletin of the Iranian Mathematical Society, 2021, 47 : 31 - 53