The Monotone Extended Second-Order Cone and Mixed Complementarity Problems

被引:0
|
作者
Yingchao Gao
Sándor Zoltán Németh
Roman Sznajder
机构
[1] University of Birmingham,
[2] Bowie State University,undefined
关键词
Monotone extended second-order cone; Lyapunov rank; Complementarity problems; 26B35; 90C33; 49K45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a new generalization of the Lorentz cone L+n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{L}^n_+$$\end{document}, called the monotone extended second-order cone (MESOC). We investigate basic properties of MESOC including computation of its Lyapunov rank and proving its reducibility. Moreover, we show that in an ambient space, a cylinder is an isotonic projection set with respect to MESOC. We also examine a nonlinear complementarity problem on a cylinder, which is equivalent to a suitable mixed complementarity problem, and provide a computational example illustrating applicability of MESOC.
引用
收藏
页码:381 / 407
页数:26
相关论文
共 50 条
  • [21] A semidefinite relaxation method for second-order cone polynomial complementarity problems
    Lulu Cheng
    Xinzhen Zhang
    Computational Optimization and Applications, 2020, 75 : 629 - 647
  • [22] A power penalty method for second-order cone linear complementarity problems
    Hao, Zijun
    Wan, Zhongping
    Chi, Xiaoni
    OPERATIONS RESEARCH LETTERS, 2015, 43 (02) : 137 - 142
  • [23] The GUS-property of second-order cone linear complementarity problems
    Yang, Wei Hong
    Yuan, Xiaoming
    MATHEMATICAL PROGRAMMING, 2013, 141 (1-2) : 295 - 317
  • [24] A New Method for Solving Second-Order Cone Eigenvalue Complementarity Problems
    Adly, Samir
    Rammal, Hadia
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 165 (02) : 563 - 585
  • [25] A power penalty method for second-order cone nonlinear complementarity problems
    Hao, Zijun
    Wan, Zhongping
    Chi, Xiaoni
    Chen, Jiawei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 290 : 136 - 149
  • [26] A novel inexact smoothing method for second-order cone complementarity problems
    Wan, Z. (mathwanzhp@whu.edu.cn), 1600, World Scientific and Engineering Academy and Society, Ag. Ioannou Theologou 17-23, Zographou, Athens, 15773, Greece (12):
  • [27] The GUS-property of second-order cone linear complementarity problems
    Wei Hong Yang
    Xiaoming Yuan
    Mathematical Programming, 2013, 141 : 295 - 317
  • [28] Smoothing penalty approach for solving second-order cone complementarity problems
    Nguyen, Chieu Thanh
    Alcantara, Jan Harold
    Hao, Zijun
    Chen, Jein-Shan
    JOURNAL OF GLOBAL OPTIMIZATION, 2025, 91 (01) : 39 - 58
  • [29] The second-order cone eigenvalue complementarity problem
    Fernandes, Luis M.
    Fukushima, Masao
    Judice, Joaquim J.
    Sherali, Hanif D.
    OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (01): : 24 - 52
  • [30] A Class of Second-Order Cone Eigenvalue Complementarity Problems for Higher-Order Tensors
    Hou J.-J.
    Ling C.
    He H.-J.
    He, Hong-Jin (hehjmath@hdu.edu.cn), 1600, Springer Science and Business Media Deutschland GmbH (05): : 45 - 64