The Monotone Extended Second-Order Cone and Mixed Complementarity Problems

被引:0
|
作者
Yingchao Gao
Sándor Zoltán Németh
Roman Sznajder
机构
[1] University of Birmingham,
[2] Bowie State University,undefined
关键词
Monotone extended second-order cone; Lyapunov rank; Complementarity problems; 26B35; 90C33; 49K45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a new generalization of the Lorentz cone L+n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{L}^n_+$$\end{document}, called the monotone extended second-order cone (MESOC). We investigate basic properties of MESOC including computation of its Lyapunov rank and proving its reducibility. Moreover, we show that in an ambient space, a cylinder is an isotonic projection set with respect to MESOC. We also examine a nonlinear complementarity problem on a cylinder, which is equivalent to a suitable mixed complementarity problem, and provide a computational example illustrating applicability of MESOC.
引用
收藏
页码:381 / 407
页数:26
相关论文
共 50 条