Correction to: A Linearized Local Conservative Mixed Finite Element Method for Poisson–Nernst–Planck Equations

被引:0
|
作者
Huadong Gao
Pengtao Sun
机构
[1] Huazhong University of Science and Technology,School of Mathematics and Statistics
[2] Huazhong University of Science and Technology,Hubei Key Laboratory of Engineering Modeling and Scientific Computing
[3] University of Nevada Las Vegas,Department of Mathematical Sciences
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The original version of this article contained a mistake. There are error in line breaks in Eqs. 4.3 and 4.4 and the word “quad” was included inadvertently in Eq. 4.4.
引用
收藏
页码:818 / 818
相关论文
共 50 条
  • [41] A virtual element method for the steady-state Poisson-Nernst-Planck equations on polygonal meshes
    Liu, Yang
    Shu, Shi
    Wei, Huayi
    Yang, Ying
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 102 : 95 - 112
  • [42] Sensitivity analysis of the Poisson Nernst-Planck equations: a finite element approximation for the sensitive analysis of an electrodiffusion model
    Dione, Ibrahima
    Doyon, Nicolas
    Deteix, Jean
    JOURNAL OF MATHEMATICAL BIOLOGY, 2019, 78 (1-2) : 21 - 56
  • [43] A dynamic mass transport method for Poisson-Nernst-Planck equations
    Liu, Hailiang
    Maimaitiyiming, Wumaier
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 473
  • [44] An Inverse Averaging Finite Element Method for Solving the Size-Modified Poisson-Nernst-Planck Equations in Ion Channel Simulations
    Shen, Ruigang
    Zhang, Qianru
    Lu, Benzhuo
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2024, 36 (02) : 521 - 550
  • [45] An inverse averaging finite element method for solving three-dimensional Poisson-Nernst-Planck equations in nanopore system simulations
    Zhang, Qianru
    Wang, Qin
    Zhang, Linbo
    Lu, Benzhuo
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (19):
  • [46] POSITIVITY PRESERVING AND MASS CONSERVATIVE PROJECTION METHOD FOR THE POISSON--NERNST--PLANCK EQUATION
    Tong, Fenghua
    Cai, Yongyong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (04) : 2004 - 2024
  • [47] Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: Finite element solutions
    Lu, Benzhuo
    Holst, Michael J.
    McCammon, J. Andrew
    Zhou, Y. C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (19) : 6979 - 6994
  • [48] CONVERGENT FINITE ELEMENT DISCRETIZATIONS OF THE NAVIER-STOKES-NERNST-PLANCK-POISSON SYSTEM
    Prohl, Andreas
    Schmuck, Markus
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (03): : 531 - 571
  • [49] CONVERGENCE ANALYSIS OF A BDF2 / MIXED FINITE ELEMENT DISCRETIZATION OF A DARCY-NERNST-PLANCK-POISSON SYSTEM
    Frank, Florian
    Knabner, Peter
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2017, 51 (05) : 1883 - 1902
  • [50] FINITE DOMAIN EFFECTS IN STEADY STATE SOLUTIONS OF POISSON-NERNST-PLANCK EQUATIONS
    Elad, Doron
    Gavish, Nir
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2019, 79 (03) : 1030 - 1050