Correction to: A Linearized Local Conservative Mixed Finite Element Method for Poisson–Nernst–Planck Equations

被引:0
|
作者
Huadong Gao
Pengtao Sun
机构
[1] Huazhong University of Science and Technology,School of Mathematics and Statistics
[2] Huazhong University of Science and Technology,Hubei Key Laboratory of Engineering Modeling and Scientific Computing
[3] University of Nevada Las Vegas,Department of Mathematical Sciences
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The original version of this article contained a mistake. There are error in line breaks in Eqs. 4.3 and 4.4 and the word “quad” was included inadvertently in Eq. 4.4.
引用
收藏
页码:818 / 818
相关论文
共 50 条
  • [31] Numerical analysis of locally conservative weak Galerkin dual-mixed finite element method for the time-dependent Poisson-Nernst-Planck system
    Gharibi, Zeinab
    Dehghan, Mehdi
    Abbaszadeh, Mostafa
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 92 : 88 - 108
  • [32] A conservative discretization of the Poisson-Nernst-Planck equations on adaptive Cartesian grids
    Mirzadeh, Mohammad
    Gibou, Frederic
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 274 : 633 - 653
  • [33] Entropy method for generalized Poisson-Nernst-Planck equations
    Gonzalez Granada, Jose Rodrigo
    Kovtunenko, Victor A.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2018, 8 (04) : 603 - 619
  • [34] A meshless stochastic method for Poisson-Nernst-Planck equations
    Monteiro, Henrique B. N.
    Tartakovsky, Daniel M.
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (05):
  • [35] An Error Analysis for the Finite Element Approximation to the Steady-State Poisson-Nernst-Planck Equations
    Yang, Ying
    Lu, Benzhuo
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2013, 5 (01) : 113 - 130
  • [36] Sensitivity analysis of the Poisson Nernst–Planck equations: a finite element approximation for the sensitive analysis of an electrodiffusion model
    Ibrahima Dione
    Nicolas Doyon
    Jean Deteix
    Journal of Mathematical Biology, 2019, 78 : 21 - 56
  • [37] Discontinuous bubble immersed finite element method for Poisson-Boltzmann-Nernst-Planck model
    Kwon, In
    Kwak, Do Y.
    Jo, Gwanghyun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 438
  • [38] Banach spaces-based mixed finite element methods for the coupled Navier-Stokes and Poisson-Nernst-Planck equations
    Correa, Claudio I.
    Gatica, Gabriel N.
    Henriquez, Esteban
    Ruiz-Baier, Ricardo
    Solano, Manuel
    CALCOLO, 2024, 61 (02)
  • [39] Convergence and superconvergence analysis for a mass conservative, energy stable and linearized BDF2 scheme of the Poisson-Nernst-Planck equations
    Li, Minghao
    Shi, Dongyang
    Li, Zhenzhen
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 140
  • [40] Iteration method of solving the integrodifferential Nernst-Planck-Poisson equations
    Kol'chuzhkin, AM
    Timokhin, AM
    Ababii, VD
    Lebedev, VA
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 1999, 35 (09) : 1007 - 1010