Correction to: A Linearized Local Conservative Mixed Finite Element Method for Poisson–Nernst–Planck Equations

被引:0
|
作者
Huadong Gao
Pengtao Sun
机构
[1] Huazhong University of Science and Technology,School of Mathematics and Statistics
[2] Huazhong University of Science and Technology,Hubei Key Laboratory of Engineering Modeling and Scientific Computing
[3] University of Nevada Las Vegas,Department of Mathematical Sciences
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The original version of this article contained a mistake. There are error in line breaks in Eqs. 4.3 and 4.4 and the word “quad” was included inadvertently in Eq. 4.4.
引用
收藏
页码:818 / 818
相关论文
共 50 条
  • [21] New mixed finite element methods for the coupled Stokes and Poisson-Nernst-Planck equations in Banach spaces
    Correa, Claudio I.
    Gatica, Gabriel N.
    Ruiz-Baier, Ricardo
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (03) : 1511 - 1551
  • [22] Unconditional superconvergence analysis of a structure-preserving finite element method for the Poisson-Nernst-Planck equations
    Yang, Huaijun
    Li, Meng
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (03)
  • [23] Entropy method for generalized Poisson–Nernst–Planck equations
    José Rodrigo González Granada
    Victor A. Kovtunenko
    Analysis and Mathematical Physics, 2018, 8 : 603 - 619
  • [24] A multigrid method for the Poisson-Nernst-Planck equations
    Mathur, Sanjay R.
    Murthy, Jayathi Y.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (17-18) : 4031 - 4039
  • [25] Adaptive finite element approximation for steady-state Poisson-Nernst-Planck equations
    Tingting Hao
    Manman Ma
    Xuejun Xu
    Advances in Computational Mathematics, 2022, 48
  • [26] Modeling of electrokinetic processes by finite element integration of the Nernst-Planck-Poisson system of equations
    Paz-Garcia, Juan Manuel
    Johannesson, Bjorn
    Ottosen, Lisbeth M.
    Ribeiro, Alexandra B.
    Miguel Rodriguez-Maroto, Jose
    SEPARATION AND PURIFICATION TECHNOLOGY, 2011, 79 (02) : 183 - 192
  • [27] Adaptive finite element approximation for steady-state Poisson-Nernst-Planck equations
    Hao, Tingting
    Ma, Manman
    Xu, Xuejun
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (04)
  • [28] A free energy satisfying finite difference method for Poisson-Nernst-Planck equations
    Liu, Hailiang
    Wang, Zhongming
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 268 : 363 - 376
  • [29] A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore
    Chaudhry, Jehanzeb Hameed
    Comer, Jeffrey
    Aksimentiev, Aleksei
    Olson, Luke N.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2014, 15 (01) : 93 - 125
  • [30] A stabilized finite element method for the Poisson-Nernst-Planck equations in three-dimensional ion channel simulations
    Wang, Qin
    Li, Hongliang
    Zhang, Linbo
    Lu, Benzhuo
    APPLIED MATHEMATICS LETTERS, 2021, 111 (111)