Some Results on Spectrum and Energy of Graphs with Loops

被引:0
|
作者
Saieed Akbari
Hussah Al Menderj
Miin Huey Ang
Johnny Lim
Zhen Chuan Ng
机构
[1] Sharif University of Technology,Department of Mathematical Sciences
[2] Universiti Sains Malaysia,School of Mathematical Sciences
关键词
Energy; Spectrum; Self-loop graphs; 05C50; 05C90;
D O I
暂无
中图分类号
学科分类号
摘要
Let GS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_S$$\end{document} be a graph with loops obtained from a graph G of order n and loops at S⊆V(G).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \subseteq V(G).$$\end{document} In this paper, we establish a neccesary and sufficient condition on the bipartititeness of a connected graph G and the spectrum Spec(GS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{Spec}}(G_S)$$\end{document} and Spec(GV(G)\S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{Spec}}(G_{V(G)\backslash S})$$\end{document}. We also prove that for every S⊆V(G),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq V(G),$$\end{document}E(GS)≥E(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal E}(G_S) \ge {\mathcal E}(G)$$\end{document} when G is bipartite. Moreover, we provide an identification of the spectrum of complete graphs Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n$$\end{document} and complete bipartite graphs Km,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{m,n}$$\end{document} with loops. We characterize any graphs with loops of order n whose eigenvalues are all positive or non-negative, and also any graphs with a few distinct eigenvalues. Finally, we provide some bounds related to GS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_S$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Some results in step domination of graphs
    Caro, Y
    Lev, A
    Roditty, Y
    ARS COMBINATORIA, 2003, 68 : 105 - 114
  • [42] Some New Results on Fuzzy Graphs
    Bansal, Richa
    Rajput, Sandhya
    2016 IEEE REGION 10 HUMANITARIAN TECHNOLOGY CONFERENCE (R10-HTC), 2016,
  • [43] Some results on the signless Laplacians of graphs
    Wang, Jianfeng
    Huang, Qiongxiang
    An, Xinhui
    Belardo, Francesco
    APPLIED MATHEMATICS LETTERS, 2010, 23 (09) : 1045 - 1049
  • [44] Some results on intrinsically knotted graphs
    Blain, Paul
    Bowlin, Garry
    Fleming, Thomas
    Foisy, Joel
    Hendricks, Jacob
    Lacombe, Jason
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2007, 16 (06) : 749 - 760
  • [45] SOME RECENT RESULTS IN HAMILTONIAN GRAPHS
    LESNIAK, L
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A47 - A47
  • [46] SOME RESULTS ON SUPER MEAN GRAPHS
    Jeyanthi, P.
    Ramya, D.
    UTILITAS MATHEMATICA, 2013, 92 : 149 - 160
  • [47] Some results on the index of unicyclic graphs
    Belardo, Francesco
    Li Marzi, Enzo Maria
    Simic, Slobodan K.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 416 (2-3) : 1048 - 1059
  • [48] The spectrum of some generalized graphs related to cycle
    Scaria, Deena C.
    Indulal, G.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (01): : 274 - 280
  • [49] Some Results on Arithmetic and Balanced Graphs
    徐俊明
    沈健
    李展宗
    中国科学技术大学学报, 1998, (02) : 54 - 64
  • [50] Some new results on Jacobson graphs
    Fattahi, Z.
    Erfanian, A.
    Alinejad, M.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2019, 68 (01) : 129 - 137