Let GS\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G_S$$\end{document} be a graph with loops obtained from a graph G of order n and loops at S⊆V(G).\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S \subseteq V(G).$$\end{document} In this paper, we establish a neccesary and sufficient condition on the bipartititeness of a connected graph G and the spectrum Spec(GS)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\textrm{Spec}}(G_S)$$\end{document} and Spec(GV(G)\S)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\textrm{Spec}}(G_{V(G)\backslash S})$$\end{document}. We also prove that for every S⊆V(G),\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S\subseteq V(G),$$\end{document}E(GS)≥E(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal E}(G_S) \ge {\mathcal E}(G)$$\end{document} when G is bipartite. Moreover, we provide an identification of the spectrum of complete graphs Kn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K_n$$\end{document} and complete bipartite graphs Km,n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K_{m,n}$$\end{document} with loops. We characterize any graphs with loops of order n whose eigenvalues are all positive or non-negative, and also any graphs with a few distinct eigenvalues. Finally, we provide some bounds related to GS\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G_S$$\end{document}.
机构:
Departamento de Engenharia de Produção, Centro Federal de Educação Tecnológica do Rio de Janeiro, Rio de Janeiro, BrazilDepartamento de Engenharia de Produção, Centro Federal de Educação Tecnológica do Rio de Janeiro, Rio de Janeiro, Brazil
da Silva, João Domingos G.
Oliveira, Carla Silva
论文数: 0引用数: 0
h-index: 0
机构:
Departamento de Matemática, Escola Nacional de Ciências Estatísticas, Rio de Janeiro, BrazilDepartamento de Engenharia de Produção, Centro Federal de Educação Tecnológica do Rio de Janeiro, Rio de Janeiro, Brazil
Oliveira, Carla Silva
da Costa, Liliana Manuela G.C.
论文数: 0引用数: 0
h-index: 0
机构:
Departamento de Matemática, Colégio Pedro II, Rio de Janeiro, BrazilDepartamento de Engenharia de Produção, Centro Federal de Educação Tecnológica do Rio de Janeiro, Rio de Janeiro, Brazil