Some Results on Spectrum and Energy of Graphs with Loops

被引:0
|
作者
Saieed Akbari
Hussah Al Menderj
Miin Huey Ang
Johnny Lim
Zhen Chuan Ng
机构
[1] Sharif University of Technology,Department of Mathematical Sciences
[2] Universiti Sains Malaysia,School of Mathematical Sciences
关键词
Energy; Spectrum; Self-loop graphs; 05C50; 05C90;
D O I
暂无
中图分类号
学科分类号
摘要
Let GS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_S$$\end{document} be a graph with loops obtained from a graph G of order n and loops at S⊆V(G).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \subseteq V(G).$$\end{document} In this paper, we establish a neccesary and sufficient condition on the bipartititeness of a connected graph G and the spectrum Spec(GS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{Spec}}(G_S)$$\end{document} and Spec(GV(G)\S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{Spec}}(G_{V(G)\backslash S})$$\end{document}. We also prove that for every S⊆V(G),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq V(G),$$\end{document}E(GS)≥E(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal E}(G_S) \ge {\mathcal E}(G)$$\end{document} when G is bipartite. Moreover, we provide an identification of the spectrum of complete graphs Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n$$\end{document} and complete bipartite graphs Km,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{m,n}$$\end{document} with loops. We characterize any graphs with loops of order n whose eigenvalues are all positive or non-negative, and also any graphs with a few distinct eigenvalues. Finally, we provide some bounds related to GS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_S$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Some bounds on the Aα-energy of graphs
    Zhou, Lianlian
    Li, Dan
    Chen, Yuanyuan
    Meng, Jixiang
    FILOMAT, 2024, 38 (04) : 1329 - 1341
  • [32] A note on energy of some graphs
    Indulal, G.
    Vijayakumar, A.
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2008, 59 (02) : 269 - 274
  • [33] On the energy of some circulant graphs
    Shparlinski, I
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 414 (01) : 378 - 382
  • [34] On incidence energy of some graphs
    Wang, Weizhong
    Luo, Yanfeng
    Gao, Xing
    ARS COMBINATORIA, 2014, 114 : 427 - 436
  • [35] SOME RESULTS ON CIRCULAR PERFECT GRAPHS AND PERFECT GRAPHS
    XU Baogang (School of Mathematics and Computer Science
    Journal of Systems Science and Complexity, 2005, (02) : 167 - 173
  • [36] SOME RESULTS INVOLVING THE Aα-EIGENVALUES FOR GRAPHS AND LINE GRAPHS
    da Silva, João Domingos G.
    Oliveira, Carla Silva
    da Costa, Liliana Manuela G.C.
    arXiv,
  • [37] On distance Laplacian spectrum energy of graphs
    Ganie, Hilal A.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (05)
  • [38] HIGH-ENERGY BEHAVIOUR OF LADDER GRAPHS WITH MULTIPLE LOOPS
    HORVATH, Z
    POCSIK, G
    LETTERE AL NUOVO CIMENTO, 1971, 2 (22): : 1146 - &
  • [39] The energy spectrum of reconnected vortex loops in He II
    Andryushchenko, V. A.
    Kondaurova, L. P.
    LOW TEMPERATURE PHYSICS, 2020, 46 (10) : 977 - 981
  • [40] The energy spectrum of reconnected vortex loops in he II
    Andryushchenko, V.A.
    Kondaurova, L.P.
    Fizika Nizkikh Temperatur, 2020, 46 (10): : 1155 - 1160