Some Results on Spectrum and Energy of Graphs with Loops

被引:0
|
作者
Saieed Akbari
Hussah Al Menderj
Miin Huey Ang
Johnny Lim
Zhen Chuan Ng
机构
[1] Sharif University of Technology,Department of Mathematical Sciences
[2] Universiti Sains Malaysia,School of Mathematical Sciences
关键词
Energy; Spectrum; Self-loop graphs; 05C50; 05C90;
D O I
暂无
中图分类号
学科分类号
摘要
Let GS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_S$$\end{document} be a graph with loops obtained from a graph G of order n and loops at S⊆V(G).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \subseteq V(G).$$\end{document} In this paper, we establish a neccesary and sufficient condition on the bipartititeness of a connected graph G and the spectrum Spec(GS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{Spec}}(G_S)$$\end{document} and Spec(GV(G)\S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{Spec}}(G_{V(G)\backslash S})$$\end{document}. We also prove that for every S⊆V(G),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq V(G),$$\end{document}E(GS)≥E(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal E}(G_S) \ge {\mathcal E}(G)$$\end{document} when G is bipartite. Moreover, we provide an identification of the spectrum of complete graphs Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n$$\end{document} and complete bipartite graphs Km,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{m,n}$$\end{document} with loops. We characterize any graphs with loops of order n whose eigenvalues are all positive or non-negative, and also any graphs with a few distinct eigenvalues. Finally, we provide some bounds related to GS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_S$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Some Results on Multithreshold Graphs
    Puleo, Gregory J.
    GRAPHS AND COMBINATORICS, 2020, 36 (03) : 913 - 919
  • [22] Some results on elegant graphs
    Balakrishnan, R
    Selvam, A
    Yegnanarayanan, V
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1997, 28 (07): : 905 - 916
  • [23] Some Results on Multithreshold Graphs
    Gregory J. Puleo
    Graphs and Combinatorics, 2020, 36 : 913 - 919
  • [24] On some graphs determined by their generalized spectrum
    Liu, Fenjin
    Wang, Wei
    Mao, Lihuan
    UTILITAS MATHEMATICA, 2016, 101 : 107 - 118
  • [25] Spectrum of Gallai Graph of Some Graphs
    Jeepamol J. Palathingal
    Gopalapillai Indulal
    S. Aparna Lakshmanan
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 1829 - 1841
  • [26] Spectrum of Gallai Graph of Some Graphs
    Palathingal, Jeepamol J.
    Indulal, Gopalapillai
    Lakshmanan, S. Aparna
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (04): : 1829 - 1841
  • [27] SOME GRAPHS DETERMINED BY THEIR DISTANCE SPECTRUM
    Lin, Huiqiu
    Drury, Stephen
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2018, 34 : 320 - 330
  • [28] ON THE NORMALIZED LAPLACIAN SPECTRUM OF SOME GRAPHS
    Varghese, Renny P.
    Susha, D.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (03): : 431 - 442
  • [29] ON SOME RESULTS OF PERFECT DOMINATIONS OF SOME GRAPHS
    Caay, M. L.
    Palahang, S. R.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (02): : 600 - 607
  • [30] Some results involving the Aα - eigenvalues for graphs and line graphs
    da Silva Junior, Joao Domingos G.
    Oliveira, Carla Silva
    da Costa, Liliana Manuela G. C.
    SPECIAL MATRICES, 2024, 12 (01):