Energy Decay and Stability of a Perfectly Matched Layer For the Wave Equation

被引:0
|
作者
Daniel H. Baffet
Marcus J. Grote
Sébastien Imperiale
Maryna Kachanovska
机构
[1] University of Basel,Department of Mathematics and Computer Science
[2] Inria — LMS,undefined
[3] Ecole Polytechnique,undefined
[4] CNRS — Institut Polytechnique de Paris,undefined
[5] POEMS (UMR 7231 CNRS,undefined
[6] ENSTA,undefined
[7] INRIA),undefined
[8] INRIA,undefined
[9] Institut Polytechnique de Paris,undefined
来源
关键词
Perfectly matched layers; Stability; Numerical stability;
D O I
暂无
中图分类号
学科分类号
摘要
In Grote and Sim (Efficient PML for the wave equation. Preprint, arXiv:1001.0319 [math:NA], 2010; in: Proceedings of the ninth international conference on numerical aspects of wave propagation (WAVES 2009, held in Pau, France, 2009), pp 370–371), a PML formulation was proposed for the wave equation in its standard second-order form. Here, energy decay and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} stability bounds in two and three space dimensions are rigorously proved both for continuous and discrete formulations with constant damping coefficients. Numerical results validate the theory.
引用
收藏
页码:2237 / 2270
页数:33
相关论文
共 50 条
  • [41] A residual perfectly matched layer for wave propagation in elastic media
    Luo, Yuqin
    Wang, Tao
    Li, Yongdong
    Cai, Ji
    Wang, Ying
    Fang, Guangyou
    ACTA GEOPHYSICA, 2024, 72 (03) : 1561 - 1573
  • [42] A residual perfectly matched layer for wave propagation in elastic media
    Yuqin Luo
    Tao Wang
    Yongdong Li
    Ji Cai
    Ying Wang
    Guangyou Fang
    Acta Geophysica, 2024, 72 : 1561 - 1573
  • [43] Nearly perfectly matched layer absorber for viscoelastic wave equations
    Wang, Enjiang
    Carcione, Jose M.
    Ba, Jing
    Alajmi, Mamdoh
    Qadrouh, Ayman N.
    GEOPHYSICS, 2019, 84 (05) : T335 - T345
  • [44] Application of the nearly perfectly matched layer in acoustic wave modeling
    Hu, Wenyi
    Abubakar, Aria
    Habashy, Tarek M.
    GEOPHYSICS, 2007, 72 (05) : SM169 - SM175
  • [45] A NEW PERFECTLY MATCHED LAYER METHOD FOR THE HELMHOLTZ EQUATION IN NONCONVEX DOMAINS
    Li, Buyang
    Li, Yonglin
    Zheng, Weiying
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2023, 83 (02) : 666 - 694
  • [46] A perfectly matched layer for the Helmholtz equation in a semi-infinite strip
    Singer, I
    Turkel, E
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 201 (02) : 439 - 465
  • [47] Perfectly Matched Layer for an Elastic Parabolic Equation Model in Ocean Acoustics
    XU Chuanxiu
    ZHANG Haigang
    PIAO Shengchun
    YANG Shi'e
    SUN Sipeng
    TANG Jun
    Journal of Ocean University of China, 2017, 16 (01) : 57 - 64
  • [48] Perfectly matched layer for an elastic parabolic equation model in ocean acoustics
    Xu, Chuanxiu
    Zhang, Haigang
    Piao, Shengchun
    Yang, Shi'e
    Sun, Sipeng
    Tang, Jun
    JOURNAL OF OCEAN UNIVERSITY OF CHINA, 2017, 16 (01) : 57 - 64
  • [49] Auxiliary differential equation formulation: An efficient implementation of the perfectly matched layer
    Ramadan, O
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2003, 13 (02) : 69 - 71
  • [50] Perfectly matched layer for an elastic parabolic equation model in ocean acoustics
    Chuanxiu Xu
    Haigang Zhang
    Shengchun Piao
    Shi’e Yang
    Sipeng Sun
    Jun Tang
    Journal of Ocean University of China, 2017, 16 : 57 - 64