Energy Decay and Stability of a Perfectly Matched Layer For the Wave Equation

被引:0
|
作者
Daniel H. Baffet
Marcus J. Grote
Sébastien Imperiale
Maryna Kachanovska
机构
[1] University of Basel,Department of Mathematics and Computer Science
[2] Inria — LMS,undefined
[3] Ecole Polytechnique,undefined
[4] CNRS — Institut Polytechnique de Paris,undefined
[5] POEMS (UMR 7231 CNRS,undefined
[6] ENSTA,undefined
[7] INRIA),undefined
[8] INRIA,undefined
[9] Institut Polytechnique de Paris,undefined
来源
关键词
Perfectly matched layers; Stability; Numerical stability;
D O I
暂无
中图分类号
学科分类号
摘要
In Grote and Sim (Efficient PML for the wave equation. Preprint, arXiv:1001.0319 [math:NA], 2010; in: Proceedings of the ninth international conference on numerical aspects of wave propagation (WAVES 2009, held in Pau, France, 2009), pp 370–371), a PML formulation was proposed for the wave equation in its standard second-order form. Here, energy decay and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} stability bounds in two and three space dimensions are rigorously proved both for continuous and discrete formulations with constant damping coefficients. Numerical results validate the theory.
引用
收藏
页码:2237 / 2270
页数:33
相关论文
共 50 条
  • [21] An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation
    Komatitsch, Dimitri
    Martin, Roland
    GEOPHYSICS, 2007, 72 (05) : SM155 - SM167
  • [23] Optimization of perfectly matched layer for Laplace's equation
    Dedek, L
    Dedkova, J
    Valsa, J
    IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) : 501 - 504
  • [24] Stability of perfectly matched layer regions in generalized finite difference method for wave problems
    Salete, E.
    Benito, J. J.
    Urena, F.
    Gavete, L.
    Urena, M.
    Garcia, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 312 : 231 - 239
  • [25] A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation
    Komatitsch, D
    Tromp, J
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2003, 154 (01) : 146 - 153
  • [26] An unsplit convolutional perfectly matched layer technique improved at grazing incidence for the viscoelastic wave equation
    Martin, Roland
    Komatitsch, Dimitri
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2009, 179 (01) : 333 - 344
  • [27] Perfectly matched layer on curvilinear grid for the second-order seismic acoustic wave equation
    Yuan, Sanyi
    Wang, Shangxu
    Sun, Wenju
    Miao, Lina
    Li, Zhenhua
    EXPLORATION GEOPHYSICS, 2014, 45 (02) : 94 - 104
  • [28] FINITE ELEMENT METHOD FOR A NONLINEAR PERFECTLY MATCHED LAYER HELMHOLTZ EQUATION WITH HIGH WAVE NUMBER
    Jiang, Run
    Li, Yonglin
    Wu, Haijun
    Zou, Jun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (05) : 2866 - 2896
  • [29] On the Accuracy and Stability of the Perfectly Matched Layer in Transient Waveguides
    Duru, Kenneth
    Kreiss, Gunilla
    JOURNAL OF SCIENTIFIC COMPUTING, 2012, 53 (03) : 642 - 671
  • [30] On the Accuracy and Stability of the Perfectly Matched Layer in Transient Waveguides
    Kenneth Duru
    Gunilla Kreiss
    Journal of Scientific Computing, 2012, 53 : 642 - 671