Energy Decay and Stability of a Perfectly Matched Layer For the Wave Equation

被引:0
|
作者
Daniel H. Baffet
Marcus J. Grote
Sébastien Imperiale
Maryna Kachanovska
机构
[1] University of Basel,Department of Mathematics and Computer Science
[2] Inria — LMS,undefined
[3] Ecole Polytechnique,undefined
[4] CNRS — Institut Polytechnique de Paris,undefined
[5] POEMS (UMR 7231 CNRS,undefined
[6] ENSTA,undefined
[7] INRIA),undefined
[8] INRIA,undefined
[9] Institut Polytechnique de Paris,undefined
来源
关键词
Perfectly matched layers; Stability; Numerical stability;
D O I
暂无
中图分类号
学科分类号
摘要
In Grote and Sim (Efficient PML for the wave equation. Preprint, arXiv:1001.0319 [math:NA], 2010; in: Proceedings of the ninth international conference on numerical aspects of wave propagation (WAVES 2009, held in Pau, France, 2009), pp 370–371), a PML formulation was proposed for the wave equation in its standard second-order form. Here, energy decay and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} stability bounds in two and three space dimensions are rigorously proved both for continuous and discrete formulations with constant damping coefficients. Numerical results validate the theory.
引用
收藏
页码:2237 / 2270
页数:33
相关论文
共 50 条
  • [31] STABILITY AND CONVERGENCE ANALYSIS OF TIME-DOMAIN PERFECTLY MATCHED LAYERS FOR THE WAVE EQUATION IN WAVEGUIDES
    Becache, Eliane
    Kachanovska, Maryna
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (04) : 2004 - 2039
  • [32] COMPARISON BETWEEN THE NEARLY PERFECTLY MATCHED LAYER AND UNSPLIT CONVOLUTIONAL PERFECTLY MATCHED LAYER METHODS USING ACOUSTIC WAVE MODELING
    Chen, Jingyi
    Zhang, Chaoying
    Bording, Ralph Phillip
    JOURNAL OF SEISMIC EXPLORATION, 2010, 19 (02): : 173 - 185
  • [33] Perfectly matched layers for the Boltzmann equation: Stability and sensitivity analysis
    Sutti, Marco
    Hesthaven, Jan S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 509
  • [34] Unsplit perfectly matched layer for acoustic field simulation based on second-order wave equation
    MA Youneng
    YU Jinhua
    WANG Yuanyuan
    Chinese Journal of Acoustics, 2013, 32 (04) : 323 - 332
  • [35] FEM AND CIP-FEM FOR HELMHOLTZ EQUATION WITH HIGH WAVE NUMBER AND PERFECTLY MATCHED LAYER TRUNCATION
    Li, Yonglin
    Wu, Haijun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (01) : 96 - 126
  • [36] A Variational Formulation of a Stabilized Unsplit Convolutional Perfectly Matched Layer for The Isotropic or Anisotropic Seismic Wave Equation
    Martin, R.
    Komatitsch, D.
    Gedney, S. D.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2008, 37 (03): : 274 - 304
  • [37] A variational formulation of a stabilized unsplit convolutional perfectly matched layer for the isotropic or anisotropic seismic wave equation
    Martin, R.
    Komatitsch, D.
    Gedney, S.D.
    CMES - Computer Modeling in Engineering and Sciences, 2008, 37 (03): : 274 - 304
  • [38] Application of unsplit convolutional perfectly matched layer for scalar arbitrarily wide-angle wave equation
    Chen, Hanming
    Zhou, Hui
    Li, Yanqi
    GEOPHYSICS, 2014, 79 (06) : T313 - T321
  • [39] On energy stable discontinuous Galerkin spectral element approximations of the perfectly matched layer for the wave equation (vol 350, pg 898, 2019)
    Duru, K.
    Gabriel, A. -A.
    Kreiss, G.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 398
  • [40] A perfectly matched layer approach to the nonlinear Schrodinger wave equations
    Zheng, Chunxiong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (01) : 537 - 556