Energy Decay and Stability of a Perfectly Matched Layer For the Wave Equation

被引:0
|
作者
Daniel H. Baffet
Marcus J. Grote
Sébastien Imperiale
Maryna Kachanovska
机构
[1] University of Basel,Department of Mathematics and Computer Science
[2] Inria — LMS,undefined
[3] Ecole Polytechnique,undefined
[4] CNRS — Institut Polytechnique de Paris,undefined
[5] POEMS (UMR 7231 CNRS,undefined
[6] ENSTA,undefined
[7] INRIA),undefined
[8] INRIA,undefined
[9] Institut Polytechnique de Paris,undefined
来源
关键词
Perfectly matched layers; Stability; Numerical stability;
D O I
暂无
中图分类号
学科分类号
摘要
In Grote and Sim (Efficient PML for the wave equation. Preprint, arXiv:1001.0319 [math:NA], 2010; in: Proceedings of the ninth international conference on numerical aspects of wave propagation (WAVES 2009, held in Pau, France, 2009), pp 370–371), a PML formulation was proposed for the wave equation in its standard second-order form. Here, energy decay and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} stability bounds in two and three space dimensions are rigorously proved both for continuous and discrete formulations with constant damping coefficients. Numerical results validate the theory.
引用
收藏
页码:2237 / 2270
页数:33
相关论文
共 50 条
  • [1] Energy Decay and Stability of a Perfectly Matched Layer For the Wave Equation
    Baffet, Daniel H.
    Grote, Marcus J.
    Imperiale, Sebastien
    Kachanovska, Maryna
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (03) : 2237 - 2270
  • [2] Application of a perfectly matched layer to the nonlinear wave equation
    Appeloe, Daniel
    Kreiss, Gunilla
    WAVE MOTION, 2007, 44 (7-8) : 531 - 548
  • [3] Perfectly matched layer truncation for parabolic wave equation models
    Levy, MF
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2015): : 2609 - 2624
  • [4] Boundary conditions and stability of a perfectly matched layer for the elastic wave equation in first order form
    Duru, Kenneth
    Kozdon, Jeremy E.
    Kreiss, Gunilla
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 303 : 372 - 395
  • [5] On energy stable discontinuous Galerkin spectral element approximations of the perfectly matched layer for the wave equation
    Duru, Kenneth
    Gabriel, Alice-Agnes
    Kreiss, Gunilla
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 350 : 898 - 937
  • [6] Wave Equation Simulation by Finite-Element Method with Perfectly Matched Layer
    Guo, Hongwei
    Wang, Shangxu
    Guo, Naichuan
    Chen, Wei
    NATURAL RESOURCES AND SUSTAINABLE DEVELOPMENT II, PTS 1-4, 2012, 524-527 : 96 - 100
  • [7] Study of the Accuracy of the Multiaxial Perfectly Matched Layer for the Elastic-Wave Equation
    Meza-Fajardo, Kristel C.
    Papageorgiou, Apostolos S.
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2012, 102 (06) : 2458 - 2467
  • [8] Perfectly Matched Layer for the Wave Equation Finite Difference Time Domain Method
    Miyazaki, Yutaka
    Tsuchiya, Takao
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2012, 51 (07)
  • [9] A perfectly matched layer for the 3-D wave equation in the time domain
    Rickard, Y
    Georgieva, N
    Huang, WP
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2002, 12 (05) : 181 - 183
  • [10] Convolutional perfectly matched layer for elastic second-order wave equation
    Li, YiFeng
    Matar, Olivier Bou
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2010, 127 (03): : 1318 - 1327