General energy decay rates for a weakly damped Timoshenko system

被引:0
|
作者
M. I. Mustafa
S. A. Messaoudi
机构
[1] Prince Sultan University,Mathematics Department
[2] King Fahd University of Petroleum and Minerals,Department of Mathematics and Statistics
关键词
General decay; weak dissipation; Timoshenko; convexity; 35B37; 35L55; 74D05; 93d15; 93d20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the following Timoshenko-type system: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\{ {\begin{array}{*{20}{c}} {{\varphi_{tt}} - {{\left( {{\varphi_x} + \psi } \right)}_x} = 0} \hfill & {{\text{in }}\left( {0,1} \right) \times {\mathbb{R}_{+} },} \hfill \\ {{\psi_{tt}} - {\psi_{xx}} + {\varphi_x} + \psi + \alpha (t)g{{\left( {{\psi_t}} \right)}} = 0} \hfill & {{\text{in }}\left( {0,1} \right) \times {\mathbb{R}_{+} }.} \hfill \\ \end{array} } \right. $$\end{document}
引用
收藏
页码:211 / 226
页数:15
相关论文
共 50 条
  • [21] Energy decay rates for a Timoshenko-type system of thermoelasticity of type III with constant delay
    Kafini, Muhammad
    Messaoudi, Salim A.
    Mustafa, Muhammad I.
    APPLICABLE ANALYSIS, 2014, 93 (06) : 1201 - 1216
  • [22] Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping
    M. M. Cavalcanti
    V. N. Domingos Cavalcanti
    F. A. Falcão Nascimento
    I. Lasiecka
    J. H. Rodrigues
    Zeitschrift für angewandte Mathematik und Physik, 2014, 65 : 1189 - 1206
  • [23] Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping
    Cavalcanti, M. M.
    Domingos Cavalcanti, V. N.
    Falco Nascimento, F. A.
    Lasiecka, I.
    Rodrigues, J. H.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06): : 1189 - 1206
  • [24] Energy decay for a damped nonlinear coupled system
    Guesmia, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 239 (01) : 38 - 48
  • [25] DECAY RATES FOR TIMOSHENKO SYSTEM WITH NONLINEAR ARBITRARY LOCALIZED DAMPING
    Santos, M. L.
    Almeida Junior, D. S.
    Rodrigues, J. H.
    Falcao Nascimento, Flavio A.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (1-2) : 1 - 26
  • [26] General energy decay in a Timoshenko-type system of thermoelasticity of type III with a viscoelastic damping
    Kafini, Mohammad
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 375 (02) : 523 - 537
  • [27] GENERAL AND OPTIMAL DECAY IN A MEMORY-TYPE TIMOSHENKO SYSTEM
    Messaoudi, Salim A.
    Hassan, Jamilu Hashim
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2018, 30 (01) : 117 - 145
  • [28] Existence and New General Decay Results for a Viscoelastic Timoshenko System
    Hassan, Jamilu Hashim
    Messaoudi, Salim A.
    Zahri, Mostafa
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2020, 39 (02): : 185 - 222
  • [29] UNIFORM DECAY IN WEAKLY DISSIPATIVE TIMOSHENKO SYSTEM WITH INTERNAL DISTRIBUTED DELAY FEEDBACKS
    Tijani A.APALARA
    Acta Mathematica Scientia, 2016, (03) : 815 - 830
  • [30] UNIFORM DECAY IN WEAKLY DISSIPATIVE TIMOSHENKO SYSTEM WITH INTERNAL DISTRIBUTED DELAY FEEDBACKS
    Apalara, Tijani A.
    ACTA MATHEMATICA SCIENTIA, 2016, 36 (03) : 815 - 830