Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping

被引:0
|
作者
M. M. Cavalcanti
V. N. Domingos Cavalcanti
F. A. Falcão Nascimento
I. Lasiecka
J. H. Rodrigues
机构
[1] State University of Maringá,Department of Mathematics
[2] State University of Ceará-FAFIDAM,Department of Mathematics
[3] University of Memphis,Department of Mathematics
[4] Polish Academy of Sciences,IBS
关键词
35B40; 35L53; Timoshenko system; Uniform decay rate estimates; Locally distributed damping;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Timoshenko model for vibrating beams under effect of two nonlinear and localized frictional damping mechanisms acting on the transverse displacement and on the rotational angle. We prove that the damping placed on an arbitrarily small support, unquantitized at the origin and without assuming equal speeds of propagation of waves, leads to uniform decay rates (asymptotic in time) for the energy function. This result removes the necessity (as long as both transverse displacements and rotational angles are minimally damped) of the assumption on equal speeds which has been imposed in the prior literature. The proof of this result relies on the method introduced in Daloutli et al. (Discret Contin Dyn Syst 2(1):67–94, 2009), which reduces the nonlinear stabilization to the observability inequality established for the associated linear problem. The latter is important on its own rights within the context of internal and localized controllability/observability of free linear systems.
引用
收藏
页码:1189 / 1206
页数:17
相关论文
共 50 条
  • [1] Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping
    Cavalcanti, M. M.
    Domingos Cavalcanti, V. N.
    Falco Nascimento, F. A.
    Lasiecka, I.
    Rodrigues, J. H.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06): : 1189 - 1206
  • [2] DECAY RATES FOR TIMOSHENKO SYSTEM WITH NONLINEAR ARBITRARY LOCALIZED DAMPING
    Santos, M. L.
    Almeida Junior, D. S.
    Rodrigues, J. H.
    Falcao Nascimento, Flavio A.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (1-2) : 1 - 26
  • [3] Decay rates for Timoshenko beam system with suspenders and arbitrary nonlinear localized damping
    Nascimento, F. A. Falcao
    Nonato, C. A.
    Ramos, A. J. A.
    Oliveira, J. E. L.
    ACTA MECHANICA, 2025, 236 (03) : 1487 - 1508
  • [4] Decay rates for Bresse system with arbitrary nonlinear localized damping
    Charles, Wenden
    Soriano, J. A.
    Falcao Nascimento, Flavio A.
    Rodrigues, J. H.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) : 2267 - 2290
  • [5] Uniform stability for a semilinear non-homogeneous Timoshenko system with localized nonlinear damping
    Cavalcanti, M. M.
    Correa, W. J.
    Cavalcanti, V. N. Domingos
    Silva, M. A. Jorge
    Zanchetta, J. P.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (06):
  • [6] Uniform stability for a semilinear non-homogeneous Timoshenko system with localized nonlinear damping
    M. M. Cavalcanti
    W. J. Corrêa
    V. N. Domingos Cavalcanti
    M. A. Jorge Silva
    J. P. Zanchetta
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [7] Energy decay to Timoshenko system with indefinite damping
    Fatori, Luci H.
    Saito, Tais O.
    Sepulveda, Mauricio
    Takahashi, Renan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (01) : 225 - 241
  • [8] Uniform energy decay rates for a transmission problem of Timoshenko system with two memories
    Afilal, Mounir
    Alahyane, Mohamed
    Feng, Baowei
    Soufyane, Abdelaziz
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (04):
  • [9] Uniform energy decay rates for a transmission problem of Timoshenko system with two memories
    Mounir Afilal
    Mohamed Alahyane
    Baowei Feng
    Abdelaziz Soufyane
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [10] Decay of solutions of the wave equation with arbitrary localized nonlinear damping
    Bellassoued, M
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 211 (02) : 303 - 332