General energy decay rates for a weakly damped Timoshenko system

被引:0
|
作者
M. I. Mustafa
S. A. Messaoudi
机构
[1] Prince Sultan University,Mathematics Department
[2] King Fahd University of Petroleum and Minerals,Department of Mathematics and Statistics
关键词
General decay; weak dissipation; Timoshenko; convexity; 35B37; 35L55; 74D05; 93d15; 93d20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the following Timoshenko-type system: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\{ {\begin{array}{*{20}{c}} {{\varphi_{tt}} - {{\left( {{\varphi_x} + \psi } \right)}_x} = 0} \hfill & {{\text{in }}\left( {0,1} \right) \times {\mathbb{R}_{+} },} \hfill \\ {{\psi_{tt}} - {\psi_{xx}} + {\varphi_x} + \psi + \alpha (t)g{{\left( {{\psi_t}} \right)}} = 0} \hfill & {{\text{in }}\left( {0,1} \right) \times {\mathbb{R}_{+} }.} \hfill \\ \end{array} } \right. $$\end{document}
引用
收藏
页码:211 / 226
页数:15
相关论文
共 50 条
  • [41] Energy decay of damped systems
    Veselic, K
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2004, 84 (12): : 856 - 863
  • [42] ON THE OPTIMAL DECAY RATE OF THE WEAKLY DAMPED WAVE EQUATION
    Conti, Monica
    Liverani, Lorenzo
    Pata, Vittorino
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (10) : 3421 - 3424
  • [43] New energy decay for a nonlinearly damped system of wave equations
    Zhu, Xiangyu
    Liao, Menglan
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2024, 104 (04):
  • [44] Decay rates for Timoshenko beam system with suspenders and arbitrary nonlinear localized damping
    Nascimento, F. A. Falcao
    Nonato, C. A.
    Ramos, A. J. A.
    Oliveira, J. E. L.
    ACTA MECHANICA, 2025, 236 (03) : 1487 - 1508
  • [45] HIGHER ORDER ENERGY DECAY RATES FOR DAMPED WAVE EQUATIONS WITH VARIABLE COEFFICIENTS
    Radu, Petronela
    Todorova, Grozdena
    Yordanov, Borislav
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2009, 2 (03): : 609 - 629
  • [46] Energy decay in a Timoshenko-type system of thermoelasticity of type III
    Messaoudi, Salim A.
    Said-Houari, Belkacem
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 348 (01) : 298 - 307
  • [47] GENERAL DECAY OF SOLUTIONS OF A NONLINEAR TIMOSHENKO SYSTEM WITH A BOUNDARY CONTROL OF MEMORY TYPE
    Soufyane, A.
    Afilal, M.
    Aouam, T.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2009, 22 (11-12) : 1125 - 1139
  • [48] Energy decay for a weakly nonlinear damped piezoelectric beams with magnetic effects and a nonlinear delay term
    A. Soufyane
    M. Afilal
    M. L. Santos
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [49] Energy decay for a weakly nonlinear damped piezoelectric beams with magnetic effects and a nonlinear delay term
    Soufyane, A.
    Afilal, M.
    Santos, M. L.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (04):
  • [50] General decay for a viscoelastic-type Timoshenko system with thermoelasticity of type III
    Fayssal, Djellali
    Soraya, Labidi
    Frekh, Taallah
    APPLICABLE ANALYSIS, 2023, 102 (03) : 902 - 920