The rigid-flexible value for symplectic embeddings of four-dimensional ellipsoids into polydiscs

被引:0
|
作者
Alvin Jin
Andrew Lee
机构
[1] Massachusetts Intitute of Technology,
[2] St. Thomas Aquinas College,undefined
关键词
Differential geometry; symplectic geometry; Primary 53D05; Secondary 53D22;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the embedding function cb(a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_b(a)$$\end{document} describing the problem of symplectically embedding an ellipsoid E(1, a) into the smallest scaling of the polydisc P(1, b). Previous work suggests that determining the entirety of cb(a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_b(a)$$\end{document} for all b is difficult, as infinite staircases can appear for many sequences of irrational b. In contrast, we show that for every polydisc P(1, b) with b>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b>2$$\end{document}, there is an explicit formula for the minimum a such that the embedding problem is determined only by volume. That is, when the ellipsoid is sufficiently stretched, there is a symplectic embedding of E(1, a) fully filling an appropriately scaled polydisc P(λ,λb)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(\lambda ,\lambda b)$$\end{document}. Denoted RF(b), this rigid-flexible (RF) value is piecewise smooth with a discrete set of discontinuities for b>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b>2$$\end{document}. At the same time, by exhibiting a sequence of obstructive classes for bn=n+1n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_n = \frac{n+1}{n}$$\end{document} at a=8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=8$$\end{document}, we show that RF is also discontinuous at b=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b=1$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Stability and geometry of third-order resonances in four-dimensional symplectic mappings
    Gemmi, M
    Todesco, E
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1997, 67 (03): : 181 - 204
  • [42] Boundary value problem for the four-dimensional Gellerstedt equation
    Berdyshev, A. S.
    Ryskan, A. R.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2021, 104 (04): : 35 - 48
  • [43] Four-Dimensional Trellis Coded Modulation for Flexible Optical Communications
    Alreesh, Saleem
    Schmidt-Langhorst, Carsten
    Emmerich, Robert
    Berenguer, Pablo Wilke
    Schubert, Colja
    Fischer, Johannes Karl
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2017, 35 (02) : 152 - 158
  • [44] Rigid-flexible coupling dynamics of three-dimensional hub-beams system
    Liu, Jin-Yang
    Lu, Hao
    MULTIBODY SYSTEM DYNAMICS, 2007, 18 (04) : 487 - 510
  • [45] Classification of four-dimensional real Lie bialgebras of symplectic type and their Poisson–Lie groups
    J. Abedi-Fardad
    A. Rezaei-Aghdam
    Gh. Haghighatdoost
    Theoretical and Mathematical Physics, 2017, 190 : 1 - 17
  • [46] Four-dimensional Walker metrics and symplectic structures (vol 52, pg 89, 2004)
    Matsushita, Y.
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (02) : 729 - 729
  • [47] A construction of a large family of commuting pairs of integrable symplectic birational four-dimensional maps
    Petrera, Matteo
    Suris, Yuri B.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2198):
  • [48] Invariant curves near Hamiltonian-Hopf bifurcations of four-dimensional symplectic maps
    Jorba, K
    Ollé, M
    NONLINEARITY, 2004, 17 (02) : 691 - 710
  • [49] Rigid-flexible coupling dynamics of three-dimensional hub-beams system
    Jin-Yang Liu
    Hao Lu
    Multibody System Dynamics, 2007, 18 : 487 - 510
  • [50] CLASSIFICATION OF FOUR-DIMENSIONAL REAL LIE BIALGEBRAS OF SYMPLECTIC TYPE AND THEIR POISSON-LIE GROUPS
    Abedi-Fardad, J.
    Rezaei-Aghdam, A.
    Haghighatdoost, Gh.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 190 (01) : 1 - 17