The rigid-flexible value for symplectic embeddings of four-dimensional ellipsoids into polydiscs

被引:0
|
作者
Alvin Jin
Andrew Lee
机构
[1] Massachusetts Intitute of Technology,
[2] St. Thomas Aquinas College,undefined
关键词
Differential geometry; symplectic geometry; Primary 53D05; Secondary 53D22;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the embedding function cb(a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_b(a)$$\end{document} describing the problem of symplectically embedding an ellipsoid E(1, a) into the smallest scaling of the polydisc P(1, b). Previous work suggests that determining the entirety of cb(a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_b(a)$$\end{document} for all b is difficult, as infinite staircases can appear for many sequences of irrational b. In contrast, we show that for every polydisc P(1, b) with b>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b>2$$\end{document}, there is an explicit formula for the minimum a such that the embedding problem is determined only by volume. That is, when the ellipsoid is sufficiently stretched, there is a symplectic embedding of E(1, a) fully filling an appropriately scaled polydisc P(λ,λb)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(\lambda ,\lambda b)$$\end{document}. Denoted RF(b), this rigid-flexible (RF) value is piecewise smooth with a discrete set of discontinuities for b>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b>2$$\end{document}. At the same time, by exhibiting a sequence of obstructive classes for bn=n+1n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_n = \frac{n+1}{n}$$\end{document} at a=8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=8$$\end{document}, we show that RF is also discontinuous at b=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b=1$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] A nonsmooth modified symplectic integration scheme for frictional contact dynamics of rigid-flexible multibody systems
    Luo, Jiahui
    Xu, Xiaoming
    Liu, Xiaodong
    Wu, Zhigang
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 420
  • [32] Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements
    Garcia-Vallejo, D.
    Mayo, J.
    Escalona, J. L.
    Dominguez, J.
    MULTIBODY SYSTEM DYNAMICS, 2008, 20 (01) : 1 - 28
  • [33] Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements
    D. García-Vallejo
    J. Mayo
    J. L. Escalona
    J. Domínguez
    Multibody System Dynamics, 2008, 20 : 1 - 28
  • [34] Measure of the exponential splitting of the homoclinic tangle in four-dimensional symplectic mappings
    Lega, Elena
    Guzzo, Massimiliano
    Froeschle, Claude
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2009, 104 (1-2): : 191 - 204
  • [35] Measure of the exponential splitting of the homoclinic tangle in four-dimensional symplectic mappings
    Elena Lega
    Massimiliano Guzzo
    Claude Froeschlé
    Celestial Mechanics and Dynamical Astronomy, 2009, 104 : 191 - 204
  • [37] Four-dimensional non-rigid cardiac motion estimation
    Tang, Qiulin
    Cammin, Jochen
    Srivastava, Somesh
    Taguchi, Katsuyuki
    MEDICAL IMAGING 2012: IMAGE PROCESSING, 2012, 8314
  • [38] Kinematic Analysis of a Tendon-Driven Hybrid Rigid-Flexible Four-Bar; Application to Optimum Dimensional Synthesis
    Hernandez, Alfonso
    Munoyerro, Aitor
    Urizar, Monica
    Altuzarra, Oscar
    MATHEMATICS, 2023, 11 (19)
  • [39] Rigid-flexible coupling dynamics of a flexible beam with three-dimensional large overall motion
    Department of Engineering Mechanics, Shanghai Jiaotong University, Shanghai 200030, China
    Lixue Xuebao, 2006, 2 (276-282):
  • [40] Stability and Geometry of Third-Order Resonances in four-Dimensional Symplectic Mappings
    M. Gemmi
    E. Todesco
    Celestial Mechanics and Dynamical Astronomy, 1997, 67 : 181 - 204