The rigid-flexible value for symplectic embeddings of four-dimensional ellipsoids into polydiscs

被引:0
|
作者
Alvin Jin
Andrew Lee
机构
[1] Massachusetts Intitute of Technology,
[2] St. Thomas Aquinas College,undefined
关键词
Differential geometry; symplectic geometry; Primary 53D05; Secondary 53D22;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the embedding function cb(a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_b(a)$$\end{document} describing the problem of symplectically embedding an ellipsoid E(1, a) into the smallest scaling of the polydisc P(1, b). Previous work suggests that determining the entirety of cb(a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_b(a)$$\end{document} for all b is difficult, as infinite staircases can appear for many sequences of irrational b. In contrast, we show that for every polydisc P(1, b) with b>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b>2$$\end{document}, there is an explicit formula for the minimum a such that the embedding problem is determined only by volume. That is, when the ellipsoid is sufficiently stretched, there is a symplectic embedding of E(1, a) fully filling an appropriately scaled polydisc P(λ,λb)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(\lambda ,\lambda b)$$\end{document}. Denoted RF(b), this rigid-flexible (RF) value is piecewise smooth with a discrete set of discontinuities for b>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b>2$$\end{document}. At the same time, by exhibiting a sequence of obstructive classes for bn=n+1n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_n = \frac{n+1}{n}$$\end{document} at a=8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=8$$\end{document}, we show that RF is also discontinuous at b=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b=1$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Four-dimensional simply connected symplectic symmetric spaces
    Bieliavsky, P
    GEOMETRIAE DEDICATA, 1998, 69 (03) : 291 - 316
  • [22] A new family of four-dimensional symplectic and integrable mappings
    Capel, HW
    Sahadevan, R
    PHYSICA A, 2001, 289 (1-2): : 86 - 106
  • [23] A Four-Dimensional View of IT Business Value
    Cao, Guangming
    SYSTEMS RESEARCH AND BEHAVIORAL SCIENCE, 2010, 27 (03) : 267 - 284
  • [24] Four-dimensional symplectic cobordisms containing three-handles
    Gay, David T.
    GEOMETRY & TOPOLOGY, 2006, 10 : 1749 - 1759
  • [25] Typical integrable Hamiltonian systems on a four-dimensional symplectic manifold
    Kalashnikov, VV
    IZVESTIYA MATHEMATICS, 1998, 62 (02) : 261 - 285
  • [26] Nontoric Hamiltonian circle actions on four-dimensional symplectic orbifolds
    Singer, SF
    Talvacchia, J
    Watson, N
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (03) : 937 - 940
  • [27] An improved symplectic precise integration method for analysis of the rotating rigid-flexible coupled system
    Huang, Yong-an
    Deng, Zi-chen
    Yao, Lin-xiao
    JOURNAL OF SOUND AND VIBRATION, 2007, 299 (1-2) : 229 - 246
  • [28] Formulation of three-dimensional rigid-flexible multibody systems
    Garcia-Vallejo, Daniel
    Escalona, Jose L.
    Mayo, Juana M.
    Dominguez, Jaime
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2007, VOL 5, PTS A-C,, 2008, : 1091 - 1104
  • [29] Geometry of complex instability and escape in four-dimensional symplectic maps
    Stoeber, Jonas
    Baecker, Arnd
    PHYSICAL REVIEW E, 2021, 103 (04)
  • [30] On the Existence of Rigid Spheres in Four-Dimensional Spacetime Manifolds
    Gittel, Hans-Peter
    Jezierski, Jacek
    Kijowski, Jerzy
    VIETNAM JOURNAL OF MATHEMATICS, 2016, 44 (01) : 231 - 249