The rigid-flexible value for symplectic embeddings of four-dimensional ellipsoids into polydiscs

被引:0
|
作者
Alvin Jin
Andrew Lee
机构
[1] Massachusetts Intitute of Technology,
[2] St. Thomas Aquinas College,undefined
关键词
Differential geometry; symplectic geometry; Primary 53D05; Secondary 53D22;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the embedding function cb(a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_b(a)$$\end{document} describing the problem of symplectically embedding an ellipsoid E(1, a) into the smallest scaling of the polydisc P(1, b). Previous work suggests that determining the entirety of cb(a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_b(a)$$\end{document} for all b is difficult, as infinite staircases can appear for many sequences of irrational b. In contrast, we show that for every polydisc P(1, b) with b>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b>2$$\end{document}, there is an explicit formula for the minimum a such that the embedding problem is determined only by volume. That is, when the ellipsoid is sufficiently stretched, there is a symplectic embedding of E(1, a) fully filling an appropriately scaled polydisc P(λ,λb)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(\lambda ,\lambda b)$$\end{document}. Denoted RF(b), this rigid-flexible (RF) value is piecewise smooth with a discrete set of discontinuities for b>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b>2$$\end{document}. At the same time, by exhibiting a sequence of obstructive classes for bn=n+1n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_n = \frac{n+1}{n}$$\end{document} at a=8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=8$$\end{document}, we show that RF is also discontinuous at b=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b=1$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] The rigid-flexible value for symplectic embeddings of four-dimensional ellipsoids into polydiscs
    Jin, Alvin
    Lee, Andrew
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2023, 25 (03)
  • [2] Symplectic embeddings of four-dimensional ellipsoids into integral polydiscs
    Cristofaro-Gardiner, Daniel
    Frenkel, David
    Schlenk, Felix
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (02): : 1189 - 1260
  • [3] Symplectic embeddings of four-dimensional polydisks into half integer ellipsoids
    Digiosia, L.
    Nelson, J.
    Ning, H.
    Weiler, M.
    Yang, Y.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2022, 24 (04)
  • [4] Symplectic embeddings of four-dimensional polydisks into half integer ellipsoids
    L. Digiosia
    J. Nelson
    H. Ning
    M. Weiler
    Y. Yang
    Journal of Fixed Point Theory and Applications, 2022, 24
  • [5] Symplectic embeddings of four-dimensional polydisks into balls
    Christianson, Katherine
    Nelson, Jo
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (04): : 2151 - 2178
  • [6] Symplectic embeddings into four-dimensional concave toric domains
    Choi, Keon
    Cristofaro-Gardiner, Daniel
    Frenkel, David
    Hutchings, Michael
    Ramos, Vinicius Gripp Barros
    JOURNAL OF TOPOLOGY, 2014, 7 (04) : 1054 - 1076
  • [7] Infinite staircases in the symplectic embedding problem for four-dimensional ellipsoids into polydisks
    Usher, Michael
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2019, 19 (04): : 1935 - 2022
  • [8] Symplectic embeddings of 4-dimensional ellipsoids
    McDuff, Dusa
    JOURNAL OF TOPOLOGY, 2009, 2 (01) : 1 - 22
  • [9] Symplectic embeddings of ellipsoids in dimension greater than four
    Buse, Olguta
    Hind, Richard
    GEOMETRY & TOPOLOGY, 2011, 15 (04) : 2091 - 2110
  • [10] The grid points in four-dimensional ellipsoids.
    Kloosterman, H. D.
    MATHEMATISCHE ZEITSCHRIFT, 1926, 24 : 519 - 529