Negative Ricci curvature on some non-solvable Lie groups

被引:0
|
作者
Cynthia E. Will
机构
[1] Universidad Nacional de Córdoba,
[2] FaMAF and CIEM,undefined
来源
Geometriae Dedicata | 2017年 / 186卷
关键词
Ricci curvature; Lie groups; Riemannian metrics; 53C30; 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
We show that for any non-trivial representation (V,π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(V, \pi )$$\end{document} of u(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {u}(2)$$\end{document} with the center acting as multiples of the identity, the semidirect product u(2)⋉πV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {u}(2) \ltimes _\pi V$$\end{document} admits a metric with negative Ricci curvature that can be explicitly obtained. It is proved that u(2)⋉πV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {u}(2) \ltimes _\pi V$$\end{document} degenerates to a solvable Lie algebra that admits a metric with negative Ricci curvature. An n-dimensional Lie group with compact Levi factor SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {SU}(2)$$\end{document} admitting a left invariant metric with negative Ricci is therefore obtained for any n≥7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 7$$\end{document}.
引用
收藏
页码:181 / 195
页数:14
相关论文
共 50 条
  • [21] Left invariant Riemannian metrics with harmonic curvature are Ricci-parallel in solvable Lie groups and Lie groups of dimension ≤ 6
    Aberaouze, Ilyes
    Boucetta, Mohamed
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 177
  • [22] Classification of non-solvable groups with a given property
    Foruzanfar, Zeinab
    Mostaghim, Zohreh
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2015, 125 (01): : 29 - 36
  • [23] Non-solvable groups with a large fraction of involutions
    Berkovich, Y
    ASTERISQUE, 1999, (258) : 241 - 248
  • [24] On locally finite minimal non-solvable groups
    Arikan, Ahmet
    Sezer, Sezgin
    Smith, Howard
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2010, 8 (02): : 266 - 273
  • [25] On left Hadamard transversals in non-solvable groups
    Hiramine, Yutaka
    Ito, Noboru
    DISCRETE MATHEMATICS, 2008, 308 (13) : 2776 - 2780
  • [26] THE LAITINEN CONJECTURE FOR FINITE NON-SOLVABLE GROUPS
    Pawalowski, Krzysztof
    Sumi, Toshio
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2013, 56 (01) : 303 - 336
  • [27] NUMBER OF NON-SOLVABLE SECTIONS IN LINEAR GROUPS
    FISHER, RK
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1974, 9 (NOV): : 80 - 86
  • [28] Classification of non-solvable groups with a given property
    ZEINAB FORUZANFAR
    ZOHREH MOSTAGHIM
    Proceedings - Mathematical Sciences, 2015, 125 : 29 - 36
  • [29] Eight-dimensional symplectic non-solvable Lie algebras
    Aissa, T. Ait
    Mansouri, M. W.
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (03) : 1196 - 1218
  • [30] Non-solvable contractions of semisimple Lie algebras in low dimension
    Campoamor-Stursberg, R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (20) : 5355 - 5372