Negative Ricci curvature on some non-solvable Lie groups

被引:0
|
作者
Cynthia E. Will
机构
[1] Universidad Nacional de Córdoba,
[2] FaMAF and CIEM,undefined
来源
Geometriae Dedicata | 2017年 / 186卷
关键词
Ricci curvature; Lie groups; Riemannian metrics; 53C30; 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
We show that for any non-trivial representation (V,π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(V, \pi )$$\end{document} of u(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {u}(2)$$\end{document} with the center acting as multiples of the identity, the semidirect product u(2)⋉πV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {u}(2) \ltimes _\pi V$$\end{document} admits a metric with negative Ricci curvature that can be explicitly obtained. It is proved that u(2)⋉πV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {u}(2) \ltimes _\pi V$$\end{document} degenerates to a solvable Lie algebra that admits a metric with negative Ricci curvature. An n-dimensional Lie group with compact Levi factor SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {SU}(2)$$\end{document} admitting a left invariant metric with negative Ricci is therefore obtained for any n≥7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 7$$\end{document}.
引用
收藏
页码:181 / 195
页数:14
相关论文
共 50 条
  • [41] A classification of the finite non-solvable minimal non-CA-groups
    Jafari, Leyli
    Kohl, Stefan
    Zarrin, Mohammad
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (11)
  • [42] Classification of non-solvable groups whose power graph is a cograph
    Brachter, Jendrik
    Kaja, Eda
    JOURNAL OF GROUP THEORY, 2023, 26 (04) : 851 - 872
  • [43] FIELDS INTERPRETABLE IN SUPERROSY GROUPS WITH NIP (THE NON-SOLVABLE CASE)
    Krupinski, Krzysztof
    JOURNAL OF SYMBOLIC LOGIC, 2010, 75 (01) : 372 - 386
  • [44] Classification of non-solvable groups whose power graph is a cograph
    Brachter, Jendrik
    Kaja, Eda
    arXiv, 2022,
  • [45] A NOTE ON NON-SOLVABLE GROUPS WITH GIVEN NUMBER OF PARTICULAR SUBGROUPS
    Shi, Jiangtao
    Xu, Fanjie
    Liu, Yifan
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2024, 25 (04): : 287 - 291
  • [46] Characterizations of minimal non-solvable Fitting p-groups
    Arikan, Ahmet
    JOURNAL OF GROUP THEORY, 2008, 11 (01) : 95 - 103
  • [47] Concerning the existence of Einstein and Ricci soliton metrics on solvable Lie groups
    Jablonski, Michael
    GEOMETRY & TOPOLOGY, 2011, 15 (02) : 735 - 764
  • [48] Sectional and Ricci Curvature for Three-Dimensional Lie Groups
    Thompson, Gerard
    Bhattarai, Giriraj
    JOURNAL OF MATHEMATICS, 2016, 2016
  • [49] On non-solvable Camina pairs
    Arad, Zvi
    Mann, Avinoam
    Muzychuk, Mikhail
    Pech, Cristian
    JOURNAL OF ALGEBRA, 2009, 322 (07) : 2286 - 2296
  • [50] PENTAVALENT 1-TRANSITIVE DIGRAPHS WITH NON-SOLVABLE AUTOMORPHISM GROUPS
    Akbarizadeh, Masoumeh
    Alaeiyan, Mehdi
    Scapellato, Raffaele
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (04): : 1919 - 1930