THE LAITINEN CONJECTURE FOR FINITE NON-SOLVABLE GROUPS

被引:4
|
作者
Pawalowski, Krzysztof [1 ]
Sumi, Toshio [2 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
[2] Kyushu Univ, Fac Arts & Sci, Nishi Ku, Fukuoka 8190395, Japan
关键词
Smith equivalence; real G-module; Oliver group; Laitinen conjecture; non-solvable group; FIXED-POINT SETS; SMITH EQUIVALENCE; SMOOTH ACTIONS; OLIVER GROUPS; ODD ORDER; REPRESENTATIONS; SPHERES; MANIFOLDS; COMPLEXES; COMPACT;
D O I
10.1017/S0013091512000223
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any finite group G, we impose an algebraic condition, the G(nil)-coset condition, and prove that any finite Oliver group G satisfying the G(nil)-coset condition has a smooth action on some sphere with isolated fixed points at which the tangent G-modules are not isomorphic to each other. Moreover, we prove that, for any finite non-solvable group G not isomorphic to Aut(A(6)) or P Sigma L(2, 27), the G(nil)-coset condition holds if and only if rG >= 2, where r(G) is the number of real conjugacy classes of elements of G not of prime power order. As a conclusion, the Laitinen Conjecture holds for any finite non-solvable group not isomorphic to Aut(A(6)).
引用
收藏
页码:303 / 336
页数:34
相关论文
共 50 条
  • [1] THE LAITINEN CONJECTURE FOR FINITE SOLVABLE OLIVER GROUPS
    Pawalowski, Krzysztof
    Sumi, Toshio
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (06) : 2147 - 2156
  • [2] On locally finite minimal non-solvable groups
    Arikan, Ahmet
    Sezer, Sezgin
    Smith, Howard
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2010, 8 (02): : 266 - 273
  • [3] NON-SOLVABLE SIGNALIZER FUNCTORS ON FINITE-GROUPS
    MCBRIDE, PP
    JOURNAL OF ALGEBRA, 1982, 78 (01) : 215 - 238
  • [4] FINITE NON-SOLVABLE GROUPS WITH NILPOTENT MAXIMAL SUBGROUPS
    BAUMANN, B
    JOURNAL OF ALGEBRA, 1976, 38 (01) : 119 - 135
  • [5] NON-SOLVABLE SIGNALIZER FUNCTORS ON FINITE-GROUPS
    GORENSTEIN, D
    LYONS, R
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1977, 35 (JUL) : 1 - 33
  • [6] Non-solvable graphs of groups
    Department of Mathematical Science, Tezpur University, Napaam-784028, Sonitpur, Assam, India
    不详
    793122, India
    arXiv, 1600,
  • [7] Non-Solvable Graphs of Groups
    Bhowal, Parthajit
    Nongsiang, Deiborlang
    Nath, Rajat Kanti
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (03) : 1255 - 1272
  • [8] On a class of non-solvable groups
    Miao, Long
    Zhang, Jia
    JOURNAL OF ALGEBRA, 2018, 496 : 1 - 10
  • [9] Non-Solvable Graphs of Groups
    Parthajit Bhowal
    Deiborlang Nongsiang
    Rajat Kanti Nath
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 1255 - 1272
  • [10] A classification of the finite non-solvable minimal non-CA-groups
    Jafari, Leyli
    Kohl, Stefan
    Zarrin, Mohammad
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (11)