THE LAITINEN CONJECTURE FOR FINITE NON-SOLVABLE GROUPS

被引:4
|
作者
Pawalowski, Krzysztof [1 ]
Sumi, Toshio [2 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
[2] Kyushu Univ, Fac Arts & Sci, Nishi Ku, Fukuoka 8190395, Japan
关键词
Smith equivalence; real G-module; Oliver group; Laitinen conjecture; non-solvable group; FIXED-POINT SETS; SMITH EQUIVALENCE; SMOOTH ACTIONS; OLIVER GROUPS; ODD ORDER; REPRESENTATIONS; SPHERES; MANIFOLDS; COMPLEXES; COMPACT;
D O I
10.1017/S0013091512000223
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any finite group G, we impose an algebraic condition, the G(nil)-coset condition, and prove that any finite Oliver group G satisfying the G(nil)-coset condition has a smooth action on some sphere with isolated fixed points at which the tangent G-modules are not isomorphic to each other. Moreover, we prove that, for any finite non-solvable group G not isomorphic to Aut(A(6)) or P Sigma L(2, 27), the G(nil)-coset condition holds if and only if rG >= 2, where r(G) is the number of real conjugacy classes of elements of G not of prime power order. As a conclusion, the Laitinen Conjecture holds for any finite non-solvable group not isomorphic to Aut(A(6)).
引用
收藏
页码:303 / 336
页数:34
相关论文
共 50 条