Second Order Accurate IMEX Methods for Option Pricing Under Merton and Kou Jump-Diffusion Models

被引:0
|
作者
Mohan K. Kadalbajoo
Lok Pati Tripathi
Alpesh Kumar
机构
[1] Indian Institute of Technology Kanpur,Department of Mathematics and Statistics
来源
关键词
Option pricing; Jump-diffusion model; Partial integro-differential equation; Finite differences; Spline collocation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper three implicit-explicit (IMEX) time semi-discrete methods, namely IMEX-BDF1, IMEX-BDF2 and CN-LF, are developed for solving parabolic partial integro-differential equations which arise in option pricing theory when the underlying asset follows a jump diffusion process. It is shown that IMEX-BDF2 and CN-LF are stable and second order accurate, whereas IMEX-BDF1 is stable but only first order accurate. After time semi-discretization, the resulting linear differential equations are solved by using a cubic B-spline collocation method. The methods so developed have computational complexity of O(MNlog2(M))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(MNlog_{2}(M))$$\end{document} for Merton model and of O(MN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(MN)$$\end{document} for Kou model, where N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} denotes the number of time steps and M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document} the number of collocation points. Some numerical examples, for pricing European options under Merton and Kou jump-diffusion models with constant as well as variable volatility, are presented to demonstrate the stability, convergence and computational complexity of the methods.
引用
收藏
页码:979 / 1024
页数:45
相关论文
共 50 条
  • [41] Reduced Order Models for Pricing American Options under Stochastic Volatility and Jump-Diffusion Models
    Balajewicz, Maciej
    Toivanen, Jari
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 : 734 - 743
  • [42] Option Pricing under a Mean Reverting Process with Jump-Diffusion and Jump Stochastic Volatility
    Makate, Nonthiya
    Sattayatham, Pairote
    THAI JOURNAL OF MATHEMATICS, 2012, 10 (03): : 651 - 660
  • [43] A robust numerical method for pricing American options under Kou’s jump-diffusion models based on penalty method
    Xiaoting Gan
    Ying Yang
    Kun Zhang
    Journal of Applied Mathematics and Computing, 2020, 62 : 1 - 21
  • [44] A meshless method for Asian style options pricing under the Merton jump-diffusion model
    Saib, A. A. E. F.
    Sunhaloo, M. S.
    Bhuruth, M.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (12) : 2498 - 2514
  • [45] Adaptive Radial Basis Function Methods for Pricing Options Under Jump-Diffusion Models
    Ron Tat Lung Chan
    Computational Economics, 2016, 47 : 623 - 643
  • [46] An efficient and accurate lattice for pricing derivatives under a jump-diffusion process
    Dai, Tian-Shyr
    Wang, Chuan-Ju
    Lyuu, Yuh-Dauh
    Liu, Yen-Chun
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (07) : 3174 - 3189
  • [47] Adaptive Radial Basis Function Methods for Pricing Options Under Jump-Diffusion Models
    Chan, Ron Tat Lung
    COMPUTATIONAL ECONOMICS, 2016, 47 (04) : 623 - 643
  • [48] An IMEX-BDF2 compact scheme for pricing options under regime-switching jump-diffusion models
    Chen, Yingzi
    Xiao, Aiguo
    Wang, Wansheng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (08) : 2646 - 2663
  • [49] Pricing pension plans under jump-diffusion models for the salary
    Carmen Calvo-Garrido, M.
    Vazquez, Carlos
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (12) : 1933 - 1944
  • [50] Cliquet option pricing in a jump-diffusion Levy model
    Hess, Markus
    MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2018, 5 (03): : 317 - 336