Second Order Accurate IMEX Methods for Option Pricing Under Merton and Kou Jump-Diffusion Models

被引:0
|
作者
Mohan K. Kadalbajoo
Lok Pati Tripathi
Alpesh Kumar
机构
[1] Indian Institute of Technology Kanpur,Department of Mathematics and Statistics
来源
关键词
Option pricing; Jump-diffusion model; Partial integro-differential equation; Finite differences; Spline collocation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper three implicit-explicit (IMEX) time semi-discrete methods, namely IMEX-BDF1, IMEX-BDF2 and CN-LF, are developed for solving parabolic partial integro-differential equations which arise in option pricing theory when the underlying asset follows a jump diffusion process. It is shown that IMEX-BDF2 and CN-LF are stable and second order accurate, whereas IMEX-BDF1 is stable but only first order accurate. After time semi-discretization, the resulting linear differential equations are solved by using a cubic B-spline collocation method. The methods so developed have computational complexity of O(MNlog2(M))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(MNlog_{2}(M))$$\end{document} for Merton model and of O(MN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(MN)$$\end{document} for Kou model, where N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} denotes the number of time steps and M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document} the number of collocation points. Some numerical examples, for pricing European options under Merton and Kou jump-diffusion models with constant as well as variable volatility, are presented to demonstrate the stability, convergence and computational complexity of the methods.
引用
收藏
页码:979 / 1024
页数:45
相关论文
共 50 条
  • [21] A jump-diffusion model for option pricing
    Kou, SG
    MANAGEMENT SCIENCE, 2002, 48 (08) : 1086 - 1101
  • [22] Finite volume methods for pricing jump-diffusion option model
    Gan X.
    Yin J.
    Li R.
    Tongji Daxue Xuebao/Journal of Tongji University, 2016, 44 (09): : 1458 - 1465
  • [23] Option Pricing Under Jump-Diffusion Processes with Regime Switching
    Ratanov, Nikita
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2016, 18 (03) : 829 - 845
  • [24] Option Pricing Under Jump-Diffusion Processes with Regime Switching
    Nikita Ratanov
    Methodology and Computing in Applied Probability, 2016, 18 : 829 - 845
  • [25] A jump-diffusion model for option pricing under fuzzy environments
    Xu, Weidong
    Wu, Chongfeng
    Xu, Weijun
    Li, Hongyi
    INSURANCE MATHEMATICS & ECONOMICS, 2009, 44 (03): : 337 - 344
  • [26] Approximating GARCH-jump models, jump-diffusion processes, and option pricing
    Duan, JC
    Ritchken, P
    Sun, ZQ
    MATHEMATICAL FINANCE, 2006, 16 (01) : 21 - 52
  • [27] Option pricing under jump-diffusion models with mean-reverting bivariate jumps
    Miao, Daniel Wei-Chung
    Lin, Xenos Chang-Shuo
    Chao, Wan-Ling
    OPERATIONS RESEARCH LETTERS, 2014, 42 (01) : 27 - 33
  • [28] European option pricing under stochastic volatility jump-diffusion models with transaction cost
    Tian, Yingxu
    Zhang, Haoyan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (09) : 2722 - 2741
  • [29] A L-stable Numerical Scheme for Option Pricing under Jump-Diffusion Models
    Li, Wei
    Zhou, Shengwu
    BUSINESS, ECONOMICS, FINANCIAL SCIENCES, AND MANAGEMENT, 2012, 143 : 83 - 88
  • [30] DG Method for Pricing European Options under Merton Jump-Diffusion Model
    Jiří Hozman
    Tomáš Tichý
    Miloslav Vlasák
    Applications of Mathematics, 2019, 64 : 501 - 530